An experimental robot load identification method for industrial application

被引:0
|
作者
Swevers, J [1 ]
Naumer, B [1 ]
Pieters, S [1 ]
Biber, E [1 ]
Verdonck, W [1 ]
De Schutter, J [1 ]
机构
[1] Katholieke Univ Leuven, Div PMA, B-3001 Heverlee, Belgium
来源
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses a new experimental robot load identification method that is used in industry. The method is based on periodic robot excitation and the maximum likelihood estimation of the parameters, techniques adopted from [1]. This method provides (1) accurate estimates of the robot load inertial parameters, and (2) accurate actuator torques predictions, both of which are essential for the acceptance of the results in an industrial environment. The key element to the success of this method is the comprehensiveness of the applied model, which includes beside the dynamics resulting from the robot load and motor inertia, the coupling between the actuator torques, the mechanical losses in the motors and the efficiency of the transmissions. Experimental results on a KUKA industrial robot equipped with a calibrated test load are presented.
引用
收藏
页码:318 / 327
页数:10
相关论文
共 50 条
  • [41] A Two-Stage Parameter Identification Method and Compensation Verification for Heavy Load Robot
    Wang, Zhirong
    Mao, Chentao
    Chen, Zhangwei
    Wang, Yuxiang
    Zhou, Jun
    Lu, Zhenhui
    2019 4TH INTERNATIONAL CONFERENCE ON CONTROL, ROBOTICS AND CYBERNETICS (CRC 2019), 2019, : 38 - 41
  • [42] A workload identification method of industrial robot combining dynamic model and convolutional neural network
    Yue, Xia
    Wang, Yadong
    Zhang, Chunliang
    Long, Shangbin
    Li, Zhibin
    Wang, Yuhua
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (01):
  • [43] A typical dynamic parameter identification method of 6-degree-of-freedom industrial robot
    Jiang, Surong
    Jiang, Meng
    Cao, Yanfei
    Hua, Daren
    Wu, Hongtao
    Ding, Yadong
    Chen, Bai
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2017, 231 (09) : 740 - 752
  • [44] A New Conjugate Gradient Method and Application to Dynamic Load Identification Problems
    Wang, Lin J.
    Gao, Xiang
    Xie, You X.
    Fu, Jun J.
    Du, Yi X.
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2021, 26 (02): : 121 - 131
  • [45] Smart load cells: an industrial application
    Rocha, JG
    Couto, C
    Correia, JH
    SENSORS AND ACTUATORS A-PHYSICAL, 2000, 85 (1-3) : 262 - 266
  • [46] EXPERIMENTAL IDENTIFICATION OF INDUSTRIAL PROCESSES
    HASENJAGER, E
    SCHMIDTMENDE, P
    TECHNISCHE MITTEILUNGEN KRUPP FORSCHUNGSBERICHTE, 1978, 36 (01): : 25 - 34
  • [47] Modelling and identification of a six axes industrial robot
    Waiboer, Rob
    Aarts, Ronald
    Jonker, Ben
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 2265 - 2274
  • [48] MIMO Closed Loop Identification of an Industrial Robot
    Calanca, Andrea
    Capisani, Luca M.
    Ferrara, Antonella
    Magnani, Lorenza
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (05) : 1214 - 1224
  • [49] Modeling and identification of an industrial robot for machining applications
    Abele, E.
    Weigold, M.
    Rothenbuecher, S.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2007, 56 (01) : 387 - 390
  • [50] Review of Industrial Robot Stiffness Identification and Modelling
    Wu, Kai
    Li, Jiaquan
    Zhao, Huan
    Zhong, Yong
    APPLIED SCIENCES-BASEL, 2022, 12 (17):