δ-convexity in normed linear spaces

被引:3
|
作者
An, PT
Hai, NN
机构
[1] Inst Math, Hanoi 10307, Vietnam
[2] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
[3] Hue Univ, Dept Math, Hue City, Vietnam
关键词
generalized convexity; rough convexity; delta-convexity; minimum; maximum; local boundedness; boundedness;
D O I
10.1081/NFA-200041716
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For some given positive delta, a function f : D subset of or equal to X --> IR is called delta-convex if it satisfies the Jensen inequality f(x(lambda)) less than or equal to (1 - lambda)f(x(0)) + lambdaf(x(1)) for all x(0), x(1), is an element of D and x(lambda) := (1 - lambda)x(0) + lambdax(1) is an element of [x(0), x(1)] satisfying parallel tox(0) - x(1)parallel to greater than or equal to delta, parallel tox(lambda) - x(0)parallel to greater than or equal to delta/2 and parallel tox(lambda) - x(1) parallel to greater than or equal to delta/2 [Hu, T. C., Klee, V., Larman, D. (1989). Optimization of globally convex functions. SIAM J. Control Optim. 27:1026-1047]. In this paper, we introduce delta-convex sets and show that a function f : D subset of or equal to X --> IR is delta-convex iff the level set {x is an element of D : f(x) + xi(x) less than or equal to alpha} is delta-convex for every continuous linear functional xi is an element of X* and for every real a. Some optimization properties such as constant property on affine sets, and analytical properties such as boundedness on bounded sets, local boundedness, conservation and infection of delta-convex functions are presented.
引用
收藏
页码:407 / 422
页数:16
相关论文
共 50 条
  • [41] ON NORMED ALMOST LINEAR-SPACES
    GODINI, G
    [J]. MATHEMATISCHE ANNALEN, 1988, 279 (03) : 449 - 455
  • [42] Bilinear Operators on Normed Linear Spaces
    Nakasho, Kazuhisa
    [J]. FORMALIZED MATHEMATICS, 2019, 27 (01): : 15 - 23
  • [43] INNER PRODUCTS IN NORMED LINEAR SPACES
    JAMES, RC
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (06) : 559 - 566
  • [44] FATOUS LEMMA IN NORMED LINEAR SPACES
    SCHEINBE.S
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1971, 38 (01) : 233 - &
  • [45] Area orthogonality in normed linear spaces
    Javier Alonso
    Carlos Benítez
    [J]. Archiv der Mathematik, 1997, 68 : 70 - 76
  • [46] On Hausdorff asymmetric normed linear spaces
    García-Raffi, LM
    Romaguera, S
    Pérez, EAS
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (03): : 717 - 728
  • [47] On angular bisectors in normed linear spaces
    Martini, Horst
    Wu, Senlin
    [J]. NOTE DI MATEMATICA, 2010, 30 (01): : 107 - 110
  • [48] METRIC GRADIENT IN NORMED LINEAR SPACES
    GOLOMB, M
    TAPIA, RA
    [J]. NUMERISCHE MATHEMATIK, 1972, 20 (02) : 115 - &
  • [49] Differential calculus in normed linear spaces
    Maher, Philip
    [J]. MATHEMATICAL GAZETTE, 2006, 90 (518): : 372 - 373
  • [50] RAYS IN NORMED LINEAR-SPACES
    STARBIRD, TW
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (10): : 932 - 933