Spatiotemporal salient object detection by integrating with objectness

被引:6
|
作者
Wu, Tongbao [1 ,2 ]
Liu, Zhi [1 ,2 ]
Zhou, Xiaofei [1 ,2 ]
Li, Kai [1 ,2 ]
机构
[1] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Salient object detection; Saliency; Objectness; Object probability map; PARALLEL FRAMEWORK; DETECTION MODEL; VIDEO; IMAGE; SEGMENTATION; TREE;
D O I
10.1007/s11042-017-5334-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel spatiotemporal salient object detection method by integrating saliency and objectness, for videos with complicated motion and complex scenes. The initial salient object detection result is first built upon both saliency map and objectness map. Afterwards, the region size of salient object is adjusted to obtain the frame-wise salient object detection result by iteratively updating the object probability map, which is the combination of saliency map and objectness map. Finally, in order to enhance the temporal coherence, the sequence-level refinement is performed to generate the final salient object detection result. Experimental results on public benchmark datasets demonstrate that the proposed method consistently outperforms the state-of-the-art salient object detection methods.
引用
下载
收藏
页码:19481 / 19498
页数:18
相关论文
共 50 条
  • [31] Deep Salient Object Detection by Integrating Multi-level Cues
    Zhang, Jing
    Dai, Yuchao
    Porikli, Fatih
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 1 - 10
  • [32] DS-Net: Dynamic spatiotemporal network for video salient object detection
    Liu, Jing
    Wang, Jiaxiang
    Wang, Weikang
    Su, Yuting
    DIGITAL SIGNAL PROCESSING, 2022, 130
  • [33] Video salient object detection using dual-stream spatiotemporal attention
    Xu, Chenchu
    Gao, Zhifan
    Zhang, Heye
    Li, Shuo
    de Albuquerque, Victor Hugo C.
    APPLIED SOFT COMPUTING, 2021, 108
  • [34] A novel spatiotemporal attention enhanced discriminative network for video salient object detection
    Liu, Bing
    Mu, Kezhou
    Xu, Mingzhu
    Wang, Fangyuan
    Feng, Lei
    APPLIED INTELLIGENCE, 2022, 52 (06) : 5922 - 5937
  • [35] A novel spatiotemporal attention enhanced discriminative network for video salient object detection
    Bing Liu
    Kezhou Mu
    Mingzhu Xu
    Fangyuan Wang
    Lei Feng
    Applied Intelligence, 2022, 52 : 5922 - 5937
  • [36] SRFCNM: Spatiotemporal recurrent fully convolutional network model for salient object detection
    Ishita Arora
    M. Gangadharappa
    Multimedia Tools and Applications, 2024, 83 : 38009 - 38036
  • [37] SRFCNM: Spatiotemporal recurrent fully convolutional network model for salient object detection
    Arora, Ishita
    Gangadharappa, M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38009 - 38036
  • [38] Objectness Consistent Representation for Weakly Supervised Object Detection
    Yang, Ke
    Zhang, Peng
    Qiao, Peng
    Wang, Zhiyuan
    Li, Dongsheng
    Dou, Yong
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1688 - 1696
  • [39] PROB: Probabilistic Objectness for Open World Object Detection
    Zohar, Orr
    Wang, Kuan-Chieh
    Yeung, Serena
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11444 - 11453
  • [40] A spatiotemporal bidirectional network for video salient object detection using multiscale transfer learning
    Sharma, Gaurav
    Singh, Maheep
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (02)