Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis

被引:45
|
作者
Liu, Qingqing [1 ]
Peng, Hongyun [2 ]
Wang, Zhi-An [3 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
[2] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis; Hyperbolic-parabolic system; Diffusion wave; Asymptotic stability; COMPRESSIBLE EULER EQUATIONS; UNIPOLAR HYDRODYNAMIC MODEL; LARGE TIME BEHAVIOR; P-SYSTEM; ASYMPTOTIC-BEHAVIOR; CONSERVATION-LAWS; GLOBAL EXISTENCE; STATIONARY WAVES; SMOOTH SOLUTIONS; STABILITY;
D O I
10.1016/j.jde.2022.01.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with a quasi-linear hyperbolic-parabolic system of persistence and endogenous chemotaxis modelling vasculogenesis. Under some suitable structural assumption on the pressure function, we first predict and derive the system admits a nonlinear diffusion wave in R driven by the damping effect. Then we show that the solution of the concerned system will locally and asymptotically converge to this nonlinear diffusion wave if the wave strength is small. By using the time-weighted energy estimates, we further prove that the convergence rate of the nonlinear diffusion wave is algebraic. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 286
页数:36
相关论文
共 50 条
  • [1] Convergence to nonlinear diffusion waves for solutions of hyperbolic-parabolic chemotaxis system
    Dong, Zehan
    Zhang, Nangao
    Zhu, Changjiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 377 : 332 - 368
  • [2] NONLINEAR STABILITY OF TRAVELING WAVES TO A HYPERBOLIC-PARABOLIC SYSTEM MODELING CHEMOTAXIS
    Li, Tong
    Wang, Zhi-An
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (05) : 1522 - 1541
  • [3] On a hyperbolic-parabolic chemotaxis system
    Peng, Hongyun
    Zhao, Kun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 7802 - 7827
  • [4] HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM WITH NONLINEAR PRODUCT TERMS
    Hua, Chen
    Wu Shaohua
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2008, 21 (01): : 45 - 58
  • [5] ON A HYPERBOLIC-PARABOLIC SYSTEM MODELING CHEMOTAXIS
    Li, Dong
    Li, Tong
    Zhao, Kun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (08): : 1631 - 1650
  • [6] ASYMPTOTIC STABILITY OF DIFFUSION WAVES OF A QUASI-LINEAR HYPERBOLIC-PARABOLIC MODEL FOR VASCULOGENESIS
    Liu, Qingqing
    Peng, Hongyun
    Wang, Zhi-An
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (01) : 1313 - 1346
  • [7] Global solutions for a hyperbolic-parabolic system of chemotaxis
    Granero-Belinchom, Rafael
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 872 - 883
  • [8] NONLINEAR STABILITY OF LARGE AMPLITUDE VISCOUS SHOCK WAVES OF A GENERALIZED HYPERBOLIC-PARABOLIC SYSTEM ARISING IN CHEMOTAXIS
    Li, Tong
    Wang, Zhi-An
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11): : 1967 - 1998
  • [9] COUPLED NONLINEAR HYPERBOLIC-PARABOLIC SYSTEM
    CANNON, JR
    EWING, RE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 58 (03) : 665 - 686
  • [10] THE HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM FOR VASCULOGENESIS: GLOBAL DYNAMICS AND RELAXATION LIMIT TOWARD A KELLER-SEGEL MODEL
    Crin-Barat, Timothee
    He, Qingyo
    Shou, Ling-yun
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) : 4445 - 4492