ON A HYPERBOLIC-PARABOLIC SYSTEM MODELING CHEMOTAXIS

被引:83
|
作者
Li, Dong [1 ]
Li, Tong [1 ]
Zhao, Kun [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USA
来源
基金
美国国家科学基金会;
关键词
Chemotaxis; hyperbolic-parabolic system; nonlocal; local existence; blowup criterion; global existence; long-time behavior; REACTION-DIFFUSION EQUATIONS; NONLINEAR STABILITY; TRAVELING-WAVES; AGGREGATION; EXISTENCE;
D O I
10.1142/S0218202511005519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate local/global existence, blowup criterion and long-time behavior of classical solutions for a hyperbolic-parabolic system derived from the Keller-Segel model describing chemotaxis. It is shown that local smooth solution blows up if and only if the accumulation of the L-infinity norm of the solution reaches infinity within the lifespan. Our blowup criteria are consistent with the chemotaxis phenomenon that the movement of cells (bacteria) is driven by the gradient of the chemical concentration. Furthermore, we study the long-time dynamics when the initial data is sufficiently close to a constant positive steady state. By using a new Fourier method adapted to the linear flow, it is shown that the smooth solution exists for all time and converges exponentially to the constant steady state with a frequency-dependent decay rate as time goes to infinity.
引用
收藏
页码:1631 / 1650
页数:20
相关论文
共 50 条
  • [1] On a hyperbolic-parabolic chemotaxis system
    Peng, Hongyun
    Zhao, Kun
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 7802 - 7827
  • [2] Global solutions for a hyperbolic-parabolic system of chemotaxis
    Granero-Belinchom, Rafael
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 872 - 883
  • [3] NONLINEAR STABILITY OF TRAVELING WAVES TO A HYPERBOLIC-PARABOLIC SYSTEM MODELING CHEMOTAXIS
    Li, Tong
    Wang, Zhi-An
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (05) : 1522 - 1541
  • [4] Decay of a 3-D hyperbolic-parabolic system modeling chemotaxis
    Zhang, Yinghui
    Li, Cong
    Xie, Weijun
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (07): : 1505 - 1525
  • [5] HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM WITH NONLINEAR PRODUCT TERMS
    Hua, Chen
    Wu Shaohua
    [J]. JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2008, 21 (01): : 45 - 58
  • [6] On the fractional Fisher information with applications to a hyperbolic-parabolic system of chemotaxis
    Granero-Belinchon, Rafael
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (04) : 3250 - 3283
  • [7] Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis
    Li, Jingyu
    Wang, Lina
    Zhang, Kaijun
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) : 1862 - 1877
  • [8] Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis
    Fan, Jishan
    Zhao, Kun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 687 - 695
  • [9] Convergence to nonlinear diffusion waves for solutions of hyperbolic-parabolic chemotaxis system
    Dong, Zehan
    Zhang, Nangao
    Zhu, Changjiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 377 : 332 - 368
  • [10] Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis
    Liu, Qingqing
    Peng, Hongyun
    Wang, Zhi-An
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 : 251 - 286