A PCA-based Data Prediction Method

被引:1
|
作者
Daugulis, Peteris [1 ]
Vagale, Vija [1 ]
Mancini, Emiliano [2 ,3 ]
Castiglione, Filippo [4 ]
机构
[1] Daugavpils Univ, Daugavpils, Latvia
[2] Hasselt Univ, Data Sci Inst, Diepenbeek, Belgium
[3] Amsterdam UMC, Dept Global Hlth, Amsterdam, Netherlands
[4] Inst Comp Applicat, Rome, Italy
来源
BALTIC JOURNAL OF MODERN COMPUTING | 2022年 / 10卷 / 01期
关键词
D O I
10.22364/bjmc.2022.10.1.01
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The problem of choosing appropriate values for missing data is often encountered in the data science. We describe a novel method containing both traditional mathematics and machine learning elements for prediction (imputation) of missing data. This method is based on the notion of distance between shifted linear subspaces representing the existing data and candidate sets. The existing data set is represented by the subspace spanned by its first principal components. Solutions for the case of the Euclidean metric are given.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [11] A PCA-based method for construction of composite sustainability indicators
    Li, Tao
    Zhang, Hongchao
    Yuan, Chris
    Liu, Zhichao
    Fan, Chengcheng
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2012, 17 (05): : 593 - 603
  • [12] A PCA-based Modeling Method for Wireless MIMO Channel
    Ma, Xiaochuan
    Zhang, Jianhua
    Zhang, Yuxiang
    Ma, Zhanyu
    Zhang, Yu
    2017 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2017, : 874 - 879
  • [13] A PCA-Based Change Detection Framework for Multidimensional Data Streams
    Qahtan, Abdulhakim
    Alharbi, Basma
    Wang, Suojin
    Zhang, Xiangliang
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 935 - 944
  • [14] PCA-based drift and shift quantification framework for multidimensional data
    Igor Goldenberg
    Geoffrey I. Webb
    Knowledge and Information Systems, 2020, 62 : 2835 - 2854
  • [15] PCA-based walking engine using motion capture data
    Glardon, P
    Boulic, R
    Thalmann, D
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 2004, : 292 - 298
  • [16] PCA-based magnification method for revealing small signals in video
    Wu, Xiu
    Yang, Xuezhi
    Jin, Jing
    Yang, Zhao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (07) : 1293 - 1299
  • [17] PCA-based drift and shift quantification framework for multidimensional data
    Goldenberg, Igor
    Webb, Geoffrey, I
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (07) : 2835 - 2854
  • [18] Blind Image Restoration Method by PCA-based Subspace Generation
    Sumali, Brian
    Hamada, Nozomu
    Mitsukura, Yasue
    2015 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2015, : 204 - 209
  • [19] PCA-based denoising method for division of focal plane polarimeters
    Zhang, Junchao
    Luo, Haibo
    Liang, Rongguang
    Zhou, Wei
    Hui, Bin
    Chang, Zheng
    OPTICS EXPRESS, 2017, 25 (03): : 2391 - 2400
  • [20] A PCA-Based Automated Method for Determination of Human Body Orientation
    Wu, Weihe
    Hao, Aimin
    Wang, Wentao
    Wang, Yiqiang
    INTELLIGENCE COMPUTATION AND EVOLUTIONARY COMPUTATION, 2013, 180 : 327 - 337