Prediction of penicillin V acylase stability in water-organic co-solvent monophasic systems as a function of solvent composition

被引:40
|
作者
Arroyo, M [1 ]
Torres-Guzmán, R [1 ]
de la Mata, I [1 ]
Castillón, MP [1 ]
Acebal, C [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Biol, Dept Bioquim & Biol Mol 1, Madrid, Spain
关键词
penicillin V acylase; Streptomyces lavendulae; organic solvents; logP; enzyme stability; monophasic systems;
D O I
10.1016/S0141-0229(00)00183-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Hydrolytic activity of penicillin V acylase (EC 3.5.1.11) can be improved by using organic cosolvents in monophasic systems. However, the addition of these solvents may result in loss of stability of the enzyme. The thermal stability of penicillin V acylase from Streptomyces lavendulae in water-organic cosolvent monophasic systems depends on the nature of the organic solvent and its concentration in the media. The threshold solvent concentration (at which half enzymatic activity is displayed) is related to the denaturing capacity of the solvent. We found out linear correlations between the free energy of denaturation at 40 degrees C and the concentration of the solvent in the media. On one hand, those solvents with logP values lower than -1.8 have a protective effect that is enhanced when its concentration is increased in the medium. On the other hand, those solvents with logP values higher than -1.8 have a denaturing effect: the higher this value and concentration, the more deleterious. Deactivation constants of PVA at 40 degrees C can be predicted in any monophasic system containing a water-miscible solvent. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:122 / 126
页数:5
相关论文
共 50 条