Tomato classification according to organoleptic maturity (coloration) using machine learning algorithms K-NN, MLP, and K-Means Clustering

被引:11
|
作者
Nino Pacheco, Wolffang D. [1 ]
Jimenez Lopez, Fabian R. [1 ]
机构
[1] UPTC, Fac Engn, Dept Elect Engn, Tunja, Colombia
关键词
Tomato classification; Digital image processing; machine learning; K-NN; MLP; K-means clustering; QUALITY EVALUATION;
D O I
10.1109/stsiva.2019.8730232
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article presents the design, development, implementation and evaluation of different machine learning type algorithms, for Milano and Chonto tomatoes classification, based on the fruit physical characteristics, such as coloring (maturity degree), taking as reference national and international standards (NTC-1103-1 and USDA, respectively). Different digital image processing techniques are shown, used to describe and extract the characteristics of color statistics of the tomatoes images. For data analysis, supervised and / or trained classification algorithms were implemented with databases and features in the RGB, HSI and L*a*b* color spaces. The techniques for classification used and valued were: K-NN (K-Nearest Neighbors), MLP type Neuronal Networks (Multilayer Perceptron) and unsupervised learning algorithms like K-Means. The evaluation of each classification algorithms is shown, using the global confusion matrix, together with performance indices such as accuracy, precision, sensitivity, and specificity.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN
    Altini, Nicola
    De Giosa, Giuseppe
    Fragasso, Nicola
    Coscia, Claudia
    Sibilano, Elena
    Prencipe, Berardino
    Hussain, Sardar Mehboob
    Brunetti, Antonio
    Buongiorno, Domenico
    Guerriero, Andrea
    Tato, Ilaria Sabina
    Brunetti, Gioacchino
    Triggiani, Vito
    Bevilacqua, Vitoantonio
    [J]. INFORMATICS-BASEL, 2021, 8 (02):
  • [2] Energy consumption clustering using machine learning: K-means approach
    Al Skaif, Aghyad
    Ayache, Mohammad
    Kanaan, Hussein
    [J]. 2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 586 - 592
  • [3] Classification of Moving Vehicles using K-Means Clustering
    Changalasetty, Suresh Babu
    Thota, Lalitha Saroja
    Badawy, Ahmed Said
    Ghribi, Wade
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES, 2015,
  • [4] Support vector machine using K-means clustering
    Lee, S. J.
    Park, C.
    Jhun, M.
    Ko, J-Y.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2007, 36 (01) : 175 - 182
  • [5] Improving Web Service Recommendation using Clustering with K-NN and SVD Algorithms
    Weerasinghe, Amith M.
    Rupasingh, Rupasingha A. H. M.
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (05) : 1708 - 1727
  • [6] Estimating Stripping of Asphalt Coating Using k-Means Clustering and Machine Learning-Based Classification
    Sahari Moghaddam, Ashkan
    Rezazadeh Azar, Ehsan
    Mejias, Yolibeth
    Bell, Heather
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2020, 34 (01)
  • [7] Application of K-Means Clustering Algorithm in Automatic Machine Learning
    [J]. Ji, Dongri (jidongri0016@163.com), 1600, Springer Science and Business Media Deutschland GmbH (1131):
  • [8] Persimmon recognition machine learning and K-Means clustering algorithm
    Xie, Fuxiang
    Wang, Kai
    Song, Jian
    Teng, Dawei
    [J]. International Journal of Simulation: Systems, Science and Technology, 2015, 16 (02): : 1 - 5
  • [9] Applying Machine Learning in Marketing: An Analysis Using the NMF and k-Means Algorithms
    Gallego, Victor
    Lingan, Jessica
    Freixes, Alfons
    Juan, Angel A.
    Osorio, Celia
    [J]. INFORMATION, 2024, 15 (07)
  • [10] Machine learning in APOGEE Unsupervised spectral classification with K-means
    Garcia-Dias, Rafael
    Allende Prieto, Carlos
    Sanchez Almeida, Jorge
    Ordovas-Pascual, Ignacio
    [J]. ASTRONOMY & ASTROPHYSICS, 2018, 612