Energy consumption clustering using machine learning: K-means approach

被引:0
|
作者
Al Skaif, Aghyad [1 ]
Ayache, Mohammad [2 ]
Kanaan, Hussein [1 ]
机构
[1] Islamic Univ Lebanon, Comp Sci Engn, Beirut, Lebanon
[2] Islamic Univ Lebanon, Dept Biomed Engn, Beirut, Lebanon
关键词
Energy Consumption; Clustering; Elbow Method; K-means;
D O I
10.1109/ACIT53391.2021.9677130
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the accurate analysis of energy consumption has become vital for the development of efficient energy projects as well as, for demonstrating the consumptive behavior of the energy consumers in the system. The importance of this analysis comes from many reasons, one of them is that it leads to a better understanding of the system components. This paper presents a clustering algorithm for residential energy consumption using the K-Means algorithm in two different approaches. The dataset utilized in this article contains energy consumption features selected from 25 houses over a period of two years. Firstly, data cleaning has been used to remove and eliminate the inconsistent data, secondly the Elbow method has been applied to determine the optimal number of clusters before using the K-means approach for the purpose of clustering. In K-means, the data have been clustered into two different approaches. The first one is clustering the daily mean consumption in each season in each year. The second one is clustering the monthly mean consumption over the two years. Finally, data visualization has been applied in order to present the result of our proposed method. The paper finds that the households have different consumption behaviors in different seasons, days, and months and that it is due to the change of the average temperature in each season as well as the different appliances and consumptive patters of each house. The results are representative and match the aim of the paper. Further, they are significant for the further development of the energy system and efficient for tracking the consumption of the houses. Finally, the results of this paper are going to be used after running the algorithm again with a different number of clusters to compare the results and find new insights in the data that might affect the decision.
引用
下载
收藏
页码:586 / 592
页数:7
相关论文
共 50 条
  • [1] Support vector machine using K-means clustering
    Lee, S. J.
    Park, C.
    Jhun, M.
    Ko, J-Y.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2007, 36 (01) : 175 - 182
  • [2] Cloning localization approach using k-means clustering and support vector machine
    Alfraih, Areej S.
    Briffa, Johann A.
    Wesemeyer, Stephan
    JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (04)
  • [3] Application of K-Means Clustering Algorithm in Automatic Machine Learning
    Ji, Dongri (jidongri0016@163.com), 1600, Springer Science and Business Media Deutschland GmbH (1131):
  • [4] Persimmon recognition machine learning and K-Means clustering algorithm
    Xie, Fuxiang
    Wang, Kai
    Song, Jian
    Teng, Dawei
    International Journal of Simulation: Systems, Science and Technology, 2015, 16 (02): : 1 - 5
  • [5] Clustering the Patent Data Using K-Means Approach
    Anuranjana
    Mittas, Nisha
    Mehrotra, Deepti
    SOFTWARE ENGINEERING (CSI 2015), 2019, 731 : 639 - 645
  • [6] Deep k-Means: Jointly clustering with k-Means and learning representations
    Fard, Maziar Moradi
    Thonet, Thibaut
    Gaussier, Eric
    PATTERN RECOGNITION LETTERS, 2020, 138 : 185 - 192
  • [7] Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning
    Javidan, Seyed Mohamad
    Banakar, Ahmad
    Vakilian, Keyvan Asefpour
    Ampatzidis, Yiannis
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [8] Weighted Support Vector Machine Using k-Means Clustering
    Bang, Sungwan
    Jhun, Myoungshic
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (10) : 2307 - 2324
  • [9] MLK-means - A hybrid machine learning based k-means clustering algorithm for document clustering
    Perumal, Pitchandi
    Nedunchezhian, Raju
    International Journal of Computer Science Issues, 2012, 9 (5 5-2): : 164 - 173
  • [10] SVM Venn machine with k-means clustering
    Zhou, Chenzhe
    Nouretdinov, Ilia
    Luo, Zhiyuan
    Gammerman, Alex
    IFIP Advances in Information and Communication Technology, 2014, 437 : 251 - 260