Association rule hiding based on evolutionary multi-objective optimization

被引:19
|
作者
Cheng, Peng [1 ,4 ]
Lee, Ivan [2 ]
Lin, Chun-Wei [1 ]
Pan, Jeng-Shyang [1 ,3 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen, Guangdong, Peoples R China
[2] Univ S Australia, Sch IT & Math Sci, Adelaide, SA 5001, Australia
[3] Fujian Univ Technol, Coll Informat Sci & Engn, Fuzhou, Fujian, Peoples R China
[4] Southwest Univ, Sch Comp & Informat Sci, Chongqing, Peoples R China
关键词
Privacy preserving data mining; association rule hiding; evolutionary multi-objective optimization; EMO; ALGORITHMS;
D O I
10.3233/IDA-160817
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When data mining techniques are applied to discover useful knowledge behind a large data collection, they are often required to preserve some confidential information, such as sensitive frequent itemsets, rules and so on. A feasible way to ensure the confidentiality is to sanitize the database and conceal sensitive information. However, the sanitization process often produces side effects, thus minimizing these side effects is an important task. An important but ignored fact is that a tradeoff exists within different side effects. When attempting to improve the performance on one dimension, the performance on other dimensions often will be degraded. In this paper, we focus on privacy preserving in association rule mining. Since there is a tradeoff within different side effects, we tried to minimize them from the view of multi-objective optimization. A rule hiding approach based on evolutionary multi-objective optimization (EMO) is proposed. It hides sensitive rules through removing identified items. The side effects on missing non-sensitive rules, ghost rules and data loss are formulated as optimization objectives. EMO is utilized to find a suitable subset of transactions for modification so that side effects can be minimized. Experimental results on real datasets illustrate that the proposed approach can achieve satisfactory results with fewer side effects. In addition, the EMO-based approach can produce multiple hiding solutions in a single run. It provides the opportunity for a user to choose freely the preferred one by preference or experience.
引用
收藏
页码:495 / 514
页数:20
相关论文
共 50 条
  • [21] Multi-objective evolutionary design of granular rule-based classifiers
    Antonelli M.
    Ducange P.
    Lazzerini B.
    Marcelloni F.
    Granular Computing, 2016, 1 (1) : 37 - 58
  • [22] Multi-objective evolutionary design of fuzzy rule-based systems
    Ishibuchi, H
    Yamamoto, T
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 2362 - 2367
  • [23] Evolutionary multi-objective optimization based overlapping subspace clustering ?
    Paul, Dipanjyoti
    Saha, Sriparna
    Kumar, Abhishek
    Mathew, Jimson
    PATTERN RECOGNITION LETTERS, 2021, 145 : 208 - 215
  • [24] A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization
    Thiele, Lothar
    Miettinen, Kaisa
    Korhonen, Pekka J.
    Molina, Julian
    EVOLUTIONARY COMPUTATION, 2009, 17 (03) : 411 - 436
  • [25] Adaptive Windows Layout based on Evolutionary Multi-Objective Optimization
    Chen, Rui
    Xie, Tiantian
    Lin, Tao
    Chen, Yu
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2013, 9 (03) : 63 - 72
  • [26] Simultaneous concept-based evolutionary multi-objective optimization
    Avigad, Gideon
    Moshaiov, Amiram
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 193 - 207
  • [27] A cluster-based evolutionary algorithm for multi-objective optimization
    Borgulya, I
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, PROCEEDINGS, 2001, 2206 : 357 - 368
  • [28] Clustering-based Selection for Evolutionary Multi-objective Optimization
    Gong, Maoguo
    Cheng, Gang
    Jiao, Licheng
    Liu, Chao
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 255 - 259
  • [29] An Evolutionary Optimization Method Based on Scalarization for Multi-objective Problems
    Studniarski, Marcin
    Al-Jawadi, Radhwan
    Younus, Aisha
    INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, PT I, 2018, 655 : 48 - 58
  • [30] An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints
    Zeng, SY
    Kang, LSS
    Ding, LXX
    EVOLUTIONARY COMPUTATION, 2004, 12 (01) : 77 - 98