Low regularity global well-posedness for 2D Boussinesq equations with variable viscosity

被引:0
|
作者
Sun, Weixian [1 ]
Ye, Zhuan [1 ]
机构
[1] Jiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
关键词
TEMPERATURE-DEPENDENT VISCOSITY; INITIAL-BOUNDARY VALUE; SYSTEM; EULER; WELLPOSEDNESS; CRITERIA;
D O I
10.1063/5.0082787
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As a continuation of our previous work, we consider lower regularity global well-posedness for a model of the two-dimensional zero diffusivity Boussinesq equations with variable viscosity. More precisely, based on De Giorgi-Nash-Moser estimates and the refined logarithmic Gronwall-type inequality, we prove that it is globally well-posed, provided that the initial data belong to H-s with s > 1. Finally, we show that it is also valid for the two-dimensional zero diffusivity Boussinesq equations with variable viscosity in the non-divergence form. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation
    Ye, Zhuan
    Xu, Xiaojing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) : 6716 - 6744
  • [22] GLOBAL WELL-POSEDNESS FOR THE 2D FRACTIONAL BOUSSINESQ EQUATIONS IN THE SUBCRITICAL CASE
    Zhou, Daoguo
    Li, Zilai
    Shang, Haifeng
    Wu, Jiahong
    Yuan, Baoquan
    Zhao, Jiefeng
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) : 233 - 255
  • [23] On the Global Well-Posedness of 3-D Boussinesq System with Variable Viscosity
    Hammadi ABIDI
    Ping ZHANG
    ChineseAnnalsofMathematics,SeriesB, 2019, (05) : 643 - 688
  • [24] Global well-posedness of a model on 2D Boussinesq–Bénard equations
    Chaoying Li
    Xiaojing Xu
    Zhuan Ye
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [25] Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation
    Su, Xing
    Wang, Gangwei
    Wang, Yue
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [26] On the Global Well-Posedness of 3-D Boussinesq System with Variable Viscosity
    Hammadi Abidi
    Ping Zhang
    Chinese Annals of Mathematics, Series B, 2019, 40 : 643 - 688
  • [27] On the Global Well-Posedness of 3-D Boussinesq System with Variable Viscosity
    Abidi, Hammadi
    Zhang, Ping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2019, 40 (05) : 643 - 688
  • [28] Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations
    Wan, Renhui
    Chen, Jiecheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):
  • [29] Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations
    Renhui Wan
    Jiecheng Chen
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [30] Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion
    Larios, Adam
    Lunasin, Evelyn
    Titi, Edriss S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (09) : 2636 - 2654