Multisubband Plasmons in Doped ZnO Quantum Wells

被引:19
|
作者
Bajo, Miguel Montes [1 ]
Tamayo-Arriola, Julen [1 ]
Hugues, Maxime [2 ]
Ulloa, Jose M. [1 ]
Le Biavan, Nolwenn [2 ]
Peretti, Romain [3 ]
Julien, Francois H. [4 ]
Faist, Jerome [3 ]
Chauveau, Jean-Michel [2 ]
Hierro, Adrian [1 ]
机构
[1] Univ Politecn Madrid, ISOM, E-28040 Madrid, Spain
[2] Univ Cote dAzur, CNRS, CRHEA, F-06560 Valbonne, France
[3] Swiss Fed Inst Technol, Inst Quantum Elect, Zurich, Switzerland
[4] Univ Paris Saclay, Univ Paris Sud, Orsay C2N, Ctr Nanosci & Nanotechnol,CNRS, F-91405 Orsay, France
来源
PHYSICAL REVIEW APPLIED | 2018年 / 10卷 / 02期
基金
欧盟地平线“2020”;
关键词
INFRARED RADIATION; ABSORPTION; INVERSION; FIELD;
D O I
10.1103/PhysRevApplied.10.024005
中图分类号
O59 [应用物理学];
学科分类号
摘要
Intersubband (ISB) transitions are of high significance for light-emitting and light-detecting devices in the infrared and, when involving large electron densities, for plasmonics and strong light-matter coupling physics. Here it is observed that the simultaneously occurring fundamental and excited-state ISB transitions in highly-doped, m-plane ZnO/MgxZn1-xO multiple quantum wells, couple into a single collective oscillation: the multisubband plasmon (MSP). With 2D electron densities up to 4 x 101(3) cm(-2), an outstanding regime is reached in which the observed MSP frequency is three times larger than that of the fundamental ISB transition as a result of depolarization. This effect is analyzed using a dielectric tensor for ZnO including the interaction of the light with the lattice, the in-plane free electrons, and the off-plane MSP. The impact of the broadening of the MSP and its interaction with phonons is discussed. The results presented here show the potential of ZnO/MgxZn1-xO for infrared optoelectronic applications, which can be extended to the THz range with appropriate design of the quantum wells.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Excitons in ZnO Quantum Wells
    Bataev, M. N.
    Filosofov, N. G.
    Serov, A. Yu.
    Agekyan, V. F.
    Morhain, C.
    Kochereshko, V. P.
    PHYSICS OF THE SOLID STATE, 2018, 60 (12) : 2628 - 2633
  • [22] PLASMONS LOCALIZED AT IMPURITIES IN SEMICONDUCTOR QUANTUM-WELLS
    RUDIN, S
    REINECKE, TL
    SUPERLATTICES AND MICROSTRUCTURES, 1990, 7 (04) : 441 - 443
  • [23] COUPLING OF PLASMONS TO POLAR PHONONS IN GAAS QUANTUM WELLS
    SATO, H
    HORI, Y
    PHYSICAL REVIEW B, 1989, 39 (14): : 10192 - 10195
  • [24] Plasmons in double quantum wells in a parallel magnetic field
    Tovstonog, SV
    Bisti, VE
    JETP LETTERS, 2003, 78 (11) : 722 - 725
  • [25] Plasmons in double quantum wells in a parallel magnetic field
    S. V. Tovstonog
    V. E. Bisti
    Journal of Experimental and Theoretical Physics Letters, 2003, 78 : 722 - 725
  • [26] PLASMONS LOCALIZED AT POINT CHARGES IN SEMICONDUCTOR QUANTUM-WELLS
    RUDIN, S
    REINECKE, TL
    PHYSICAL REVIEW B, 1993, 48 (04) : 2223 - 2235
  • [27] Erratum to: Excitons in ZnO Quantum Wells
    M. N. Bataev
    N. G. Filosofov
    A. Yu. Serov
    V. F. Agekyan
    C. Mohrain
    V. P. Kochereshko
    Physics of the Solid State, 2019, 61 (3) : 493 - 493
  • [28] Plasmons in coupled electron-hole double quantum wells
    Aizin, GR
    Laikhtman, B
    Gumbs, G
    PHYSICAL REVIEW B, 2001, 64 (12):
  • [29] PLASMONS LOCALIZED AT POINT CHARGES IN SEMICONDUCTOR QUANTUM-WELLS
    RUDIN, S
    REINECKE, TL
    SURFACE SCIENCE, 1994, 305 (1-3) : 267 - 270
  • [30] Screening properties and plasmons of Hg(Cd)Te quantum wells
    Juergens, Stefan
    Michetti, Paolo
    Trauzettel, Bjoern
    PHYSICAL REVIEW B, 2014, 90 (11):