RF-Driven Crowd-Size Classifcation via Machine Learning

被引:1
|
作者
de Brito Guerra, Tarciana Cabral [1 ]
de Santana, Pedro Maia [2 ]
de Medeiros Campos, Millena Michely [1 ]
Mattos, Mateus de Oliveira [3 ]
de Medeiros, Alvaro A. M. [4 ]
de Sousa, Vicente Angelo [1 ]
机构
[1] Univ Fed Rio Grande do Norte, BR-59078970 Natal, RN, Brazil
[2] Samsung R&D Inst SIDTA, BR-69030060 Manaus, Amazonas, Brazil
[3] Ctr Res & Dev Telecommun CPqD, BR-13086902 Campinas, SP, Brazil
[4] Univ Fed Juiz de Fora, BR-36036900 Juiz De Fora, Brazil
来源
关键词
Indoor people detection; machine learning (ML); radio frequency (RF) signal;
D O I
10.1109/LAWP.2019.2932076
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose a machine learning solution for crowd-size classification in an indoor environment. Narrow-band radio frequency signals are used to identify a pattern according to the number of people. Experimental data collected by a low-cost software-defined radio platform are postprocessed by applying a feature mapping along with the random forest technique for classifying the crowd-size scenarios. The proposed solution has significant accuracy in classification performance.
引用
收藏
页码:2321 / 2324
页数:4
相关论文
共 50 条
  • [1] ANOMALOUS ION HEATING VIA PARAMETRIC RESONANCE IN RF-DRIVEN PLASMA SHEATHS
    RIYOPOULOS, S
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (22) : 3303 - 3306
  • [2] MACHINE LEARNING OF SWIMMING DATA VIA WISDOM OF CROWD AND REGRESSION ANALYSIS
    Xie, Jiang
    Xu, Junfu
    Nie, Celine
    Nie, Qing
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2017, 14 (02) : 511 - 527
  • [3] Estimating Software Functional Size via Machine Learning
    Lavazza, Luigi
    Locoro, Angela
    Liu, Geng
    Meli, Roberto
    [J]. ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2023, 32 (05)
  • [4] Thermal transport of glasses via machine learning driven simulations
    Pegolo, Paolo
    Grasselli, Federico
    [J]. FRONTIERS IN MATERIALS, 2024, 11
  • [5] Nonequilibrium fluctuations of a driven quantum heat engine via machine learning
    Giri, Sajal Kumar
    Goswami, Himangshu Prabal
    [J]. PHYSICAL REVIEW E, 2019, 99 (02):
  • [6] Discovery of organic flow battery electrolytes via a machine learning driven approach
    Tabor, Daniel
    Hase, Florian
    Roch, Loic
    Aspuru-Guzik, Alan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [7] Predicting material microstructure evolution via data-driven machine learning
    Kautz, Elizabeth J.
    [J]. PATTERNS, 2021, 2 (07):
  • [8] Chemistrees: Data-Driven Identification of Reaction Pathways via Machine Learning
    Roet, Sander
    Daub, Christopher D.
    Riccardi, Enrico
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (10) : 6193 - 6202
  • [9] Data driven reaction mechanism estimation via transient kinetics and machine learning
    Kunz, M. Ross
    Yonge, Adam
    Fang, Zongtang
    Batchu, Rakesh
    Medford, Andrew J.
    Constales, Denis
    Yablonsky, Gregory
    Fushimi, Rebecca
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [10] Material classification via embedded RF antenna array and machine learning for intelligent mobile robots
    Ting, Te Meng
    Ahmad, Nur Syazreen
    Goh, Patrick
    [J]. Alexandria Engineering Journal, 2024, 106 : 60 - 70