Predicting material microstructure evolution via data-driven machine learning

被引:8
|
作者
Kautz, Elizabeth J. [1 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
来源
PATTERNS | 2021年 / 2卷 / 07期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.patter.2021.100285
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting microstructure evolution can be a formidable challenge, yet it is essential to building microstructure-processing-property relationships. Yang et al. offer a new solution to traditional partial differential equation-based simulations: a data-driven machine learning approach motivated by the practical needs to accelerate the materials design process and deal with incomplete information in the real world of microstructure simulation.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] A Data-Driven Machine Learning Algorithm for Predicting the Outcomes of NBA Games
    Horvat, Tomislav
    Job, Josip
    Logozar, Robert
    Livada, Caslav
    [J]. SYMMETRY-BASEL, 2023, 15 (04):
  • [2] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    Dinh, An
    Miertschin, Stacey
    Young, Amber
    Mohanty, Somya D.
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [3] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    An Dinh
    Stacey Miertschin
    Amber Young
    Somya D. Mohanty
    [J]. BMC Medical Informatics and Decision Making, 19
  • [4] NJmat: Data-Driven Machine Learning Interface to Accelerate Material Design
    Huang, Yiru
    Zhang, Lei
    Deng, Hangyuan
    Mao, Junfei
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (16) : 6477 - 6491
  • [5] Chemistrees: Data-Driven Identification of Reaction Pathways via Machine Learning
    Roet, Sander
    Daub, Christopher D.
    Riccardi, Enrico
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (10) : 6193 - 6202
  • [6] Estimation of data-driven streamflow predicting models using machine learning methods
    Siddiqi T.A.
    Ashraf S.
    Khan S.A.
    Iqbal M.J.
    [J]. Arabian Journal of Geosciences, 2021, 14 (11)
  • [7] A Data-Driven Approach to Predicting Recreational Activity Participation Using Machine Learning
    Lee, Seungbak
    Kang, Minsoo
    [J]. RESEARCH QUARTERLY FOR EXERCISE AND SPORT, 2024,
  • [8] Predicting the state of charge and health of batteries using data-driven machine learning
    Man-Fai Ng
    Jin Zhao
    Qingyu Yan
    Gareth J. Conduit
    Zhi Wei Seh
    [J]. Nature Machine Intelligence, 2020, 2 : 161 - 170
  • [9] Predicting the state of charge and health of batteries using data-driven machine learning
    Ng, Man-Fai
    Zhao, Jin
    Yan, Qingyu
    Conduit, Gareth J.
    Seh, Zhi Wei
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (03) : 161 - 170
  • [10] Predicting metabolic fluxes from omics data via machine learning: Moving from knowledge-driven towards data-driven approaches
    Goncalves, Daniel M.
    Henriques, Rui
    Costa, Rafael S.
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 4960 - 4973