On locally conformally flat manifolds with finite total Q-curvature

被引:2
|
作者
Lu, Zhiqin [1 ]
Wang, Yi [2 ]
机构
[1] Univ Calif Irvine, Dept Math, 410D Rowland Hall, Irvine, CA 92697 USA
[2] Johns Hopkins Univ, Dept Math, 404 Krieger Hall,3400 N Charles St, Baltimore, MD 21218 USA
关键词
SURFACES; METRICS;
D O I
10.1007/s00526-017-1189-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the ends of a locally conformally flat complete manifold with finite total Q-curvature. We prove that for such a manifold, the integral of the Q-curvature equals an integral multiple of a dimensional constant c(n), where cn is the integral of the Q-curvature on the unit n-sphere. It provides further evidence that the Q-curvature on a locally conformally flat manifold controls geometry as the Gaussian curvature does in two dimension.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] On the Spectrum of the Curvature Operator of Conformally Flat Riemannian Manifolds
    Gladunova, O. P.
    Rodionov, E. D.
    Slavskii, V. V.
    [J]. DOKLADY MATHEMATICS, 2013, 87 (03) : 279 - 281
  • [42] Existence of conformal metrics with prescribed Q-curvature on manifolds
    Alghanemi, Azeb
    Chtioui, Hichem
    Gdarat, Mohamed
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 85
  • [43] ON CONFORMALLY FLAT MANIFOLDS WITH CONSTANT POSITIVE SCALAR CURVATURE
    Catino, Giovanni
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2627 - 2634
  • [44] On the spectrum of the curvature operator of conformally flat Riemannian manifolds
    O. P. Gladunova
    E. D. Rodionov
    V. V. Slavskii
    [J]. Doklady Mathematics, 2013, 87 : 279 - 281
  • [45] A fourth order uniformization theorem on some four manifolds with large total Q-curvature
    Djadli, Z
    Malchiodi, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 340 (05) : 341 - 346
  • [46] Conformal metrics with constant Q-curvature for manifolds with boundary
    Ndiaye, Cheikh Birahim
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2008, 16 (05) : 1049 - 1124
  • [47] Locally conformally flat quasi-Einstein manifolds
    Catino, Giovanni
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    Rimoldi, Michele
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 675 : 181 - 189
  • [48] ON VANISHING THEOREMS FOR LOCALLY CONFORMALLY FLAT RIEMANNIAN MANIFOLDS
    Nguyen, Dang Tuyen
    Pham, Duc Thoan
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (02) : 469 - 479
  • [49] Locally conformally flat weakly-Einstein manifolds
    Eduardo García-Río
    Ali Haji-Badali
    Rodrigo Mariño-Villar
    M. Elena Vázquez-Abal
    [J]. Archiv der Mathematik, 2018, 111 : 549 - 559
  • [50] A class of locally conformally flat 4-manifolds
    Akbulut, Selman
    Kalafat, Mustafa
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2012, 18 : 733 - 763