An innovative approach to recover the metal values from spent lithium-ion batteries

被引:91
|
作者
Barik, S. P. [1 ]
Prabaharan, G. [1 ]
Kumar, B. [1 ]
机构
[1] Attero Recycling Pvt Ltd, Dept R&D, Roorkee 247661, Uttarakhand, India
关键词
Lithium-ion batteries; Recycling; Washing; Precipitation; Roasting; VALUABLE METALS; COBALT; SEPARATION;
D O I
10.1016/j.wasman.2015.11.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new approach to recover metal values from spent lithium-ion batteries with a simple and environmentally friendly method is investigated. Two stages of water washing of the mixed black powder resulted in satisfactory separation of cobalt and lithium. Lithium in the wash liquor is precipitated using saturated sodium carbonate solution. Cobalt oxide in the residue is purified by removing organic matrix through roasting followed by dilute acid washing. The purities of the products obtained during the processes are analyzed by Microwave Plasma-Atomic Emission Spectrophotometer and confirmed from X-ray diffraction analysis. The overall process is safe, economic and can be scaled up for commercial production. Based on the process steps involved, a flow sheet is proposed for industrial application. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 226
页数:5
相关论文
共 50 条
  • [31] Chlorination roasting of the cathode material contained in spent lithium-ion batteries to recover lithium, manganese, nickel and cobalt
    Barrios, Oriana C.
    Gonzalez, Yarivith C.
    Barbosa, Lucia I.
    Orosco, Pablo
    MINERALS ENGINEERING, 2022, 176
  • [32] A Review on Regenerating Materials from Spent Lithium-Ion Batteries
    Xu, Rui
    Xu, Wei
    Wang, Jinggang
    Liu, Fengmei
    Sun, Wei
    Yang, Yue
    MOLECULES, 2022, 27 (07):
  • [33] From spent lithium-ion batteries to functional materials: A review
    Zhou, Tingjin
    Lin, Keyi
    Wu, Yusen
    Qin, Baojia
    Zhu, Jie
    Huang, Zhe
    Xu, Zhenming
    Ruan, Jujun
    RESOURCES CONSERVATION AND RECYCLING, 2024, 209
  • [34] Recycling of Electrode Materials from Spent Lithium-ion Batteries
    Zhou, Xu
    He, Wen-zhi
    Li, Guang-ming
    Zhang, Xiao-jun
    Huang, Ju-wen
    Zhu, Shu-guang
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [35] A vapor thermal approach to selective recycling of spent lithium-ion batteries
    Qu, Xin
    Cai, Muya
    Zhang, Beilei
    Xie, Hongwei
    Guo, Lei
    Wang, Dihua
    Yin, Huayi
    GREEN CHEMISTRY, 2021, 23 (21) : 8673 - 8684
  • [36] A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach
    Roy, Joseph Jegan
    Cao, Bin
    Madhavi, Srinivasan
    CHEMOSPHERE, 2021, 282
  • [37] A review on recycling of spent lithium-ion batteries
    Dobo, Zsolt
    Dinh, Truong
    Kulcsar, Tibor
    ENERGY REPORTS, 2023, 9 : 6362 - 6395
  • [38] Recycling Chain for Spent Lithium-Ion Batteries
    Werner, Denis
    Peuker, Urs Alexander
    Muetze, Thomas
    METALS, 2020, 10 (03)
  • [39] Fundamentals of the recycling of spent lithium-ion batteries
    Li, Pengwei
    Luo, Shaohua
    Lin, Yicheng
    Xiao, Jiefeng
    Xia, Xiaoning
    Liu, Xin
    Wang, Li
    He, Xiangming
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (24) : 11967 - 12013
  • [40] An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach
    Wang, Meng-Meng
    Zhang, Cong-Cong
    Zhang, Fu-Shen
    WASTE MANAGEMENT, 2016, 51 : 239 - 244