On semismooth Newton's methods for total variation minimization

被引:81
|
作者
Ng, Michael K. [1 ]
Qi, Liqun
Yang, Yu-Fei
Huang, Yu-Mei
机构
[1] Hong Kong Baptist Univ, Ctr Math Imaging & Vis, Kowloon Tong, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[4] Hunan Univ, Coll Math & Econometr, Changsha, Peoples R China
[5] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
semismooth Newton's methods; total variation; denoising; regularization;
D O I
10.1007/s10851-007-0650-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In [2], Chambolle proposed an algorithm for minimizing the total variation of an image. In this short note, based on the theory on semismooth operators, we study semismooth Newton's methods for total variation minimization. The convergence and numerical results are also presented to show the effectiveness of the proposed algorithms.
引用
收藏
页码:265 / 276
页数:12
相关论文
共 50 条
  • [1] On Semismooth Newton’s Methods for Total Variation Minimization
    Michael K. Ng
    Liqun Qi
    Yu-fei Yang
    Yu-mei Huang
    [J]. Journal of Mathematical Imaging and Vision, 2007, 27 : 265 - 276
  • [2] SEMISMOOTH NEWTON METHOD FOR MINIMIZATION OF THE LLT MODEL
    Pang, Zhi-Feng
    Yang, Yu-Fei
    [J]. INVERSE PROBLEMS AND IMAGING, 2009, 3 (04) : 677 - 691
  • [3] Inexact Newton Method for Total Variation Minimization
    Zhang, Jianjun
    Wei, Jingguang
    Mammadov, Musa
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 221 - 224
  • [4] AN EFFICIENT AUGMENTED LAGRANGIAN METHOD WITH SEMISMOOTH NEWTON SOLVER FOR TOTAL GENERALIZED VARIATION
    Sun, Hongpeng
    [J]. INVERSE PROBLEMS AND IMAGING, 2022, : 381 - 405
  • [5] Semismooth Newton and Newton iterative methods for HJB equation
    Zeng, Jinping
    Sun, Zhe
    Xu, Hongru
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) : 3859 - 3869
  • [6] Semismooth Newton Method for Gradient Constrained Minimization Problem
    Anyyeva, Serbiniyaz
    Kunisch, Karl
    [J]. FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2012), 2012, 1470 : 236 - 239
  • [7] ON NEWTON'S METHOD FOR SEMISMOOTH EQUATIONS
    Argyros, I. K.
    Gonzalez, D.
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [8] PARALLEL PROXIMAL METHODS FOR TOTAL VARIATION MINIMIZATION
    Kamilov, Ulugbek S.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4697 - 4701
  • [9] Domain Decomposition Methods for Total Variation Minimization
    Chang, Huibin
    Tai, Xue-Cheng
    Yang, Danping
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, EMMCVPR 2015, 2015, 8932 : 335 - 349
  • [10] Approximate methods for constrained total variation minimization
    Dong, Xiaogang
    Pollak, Ilya
    [J]. COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2006, 3967 : 403 - 414