Semismooth Newton Method for Gradient Constrained Minimization Problem

被引:0
|
作者
Anyyeva, Serbiniyaz [1 ]
Kunisch, Karl [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, Graz, Austria
关键词
elasto-plastic torsion problem; variational inequalities with gradient constraint; constrained optimization; semismooth Newton methods; active set strategy; finite elements method;
D O I
10.1063/1.4747684
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we treat a gradient constrained minimization problem, particular case of which is the elasto-plastic torsion problem. In order to get the numerical approximation to the solution we have developed an algorithm in an infinite dimensional space framework using the concept of the generalized (Newton) differentiation. Regularization was done in order to approximate the problem with the unconstrained minimization problem and to make the pointwise maximum function Newton differentiable. Using semismooth Newton method, continuation method was developed in function space. For the numerical implementation the variational equations at Newton steps are discretized using finite elements method.
引用
收藏
页码:236 / 239
页数:4
相关论文
共 50 条
  • [1] SEMISMOOTH NEWTON METHOD FOR MINIMIZATION OF THE LLT MODEL
    Pang, Zhi-Feng
    Yang, Yu-Fei
    [J]. INVERSE PROBLEMS AND IMAGING, 2009, 3 (04) : 677 - 691
  • [2] A semismooth Newton method for tensor eigenvalue complementarity problem
    Zhongming Chen
    Liqun Qi
    [J]. Computational Optimization and Applications, 2016, 65 : 109 - 126
  • [3] A semismooth Newton method for tensor eigenvalue complementarity problem
    Chen, Zhongming
    Qi, Liqun
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (01) : 109 - 126
  • [4] A Semismooth Newton Multigrid Method for Constrained Elliptic Optimal Control Problems
    Liu, Jun
    Huang, Tingwen
    Xiao, Mingqing
    [J]. ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 397 - 405
  • [5] A SEMISMOOTH NEWTON METHOD FOR THE NEAREST EUCLIDEAN DISTANCE MATRIX PROBLEM
    Qi, Hou-Duo
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (01) : 67 - 93
  • [6] On Semismooth Newton’s Methods for Total Variation Minimization
    Michael K. Ng
    Liqun Qi
    Yu-fei Yang
    Yu-mei Huang
    [J]. Journal of Mathematical Imaging and Vision, 2007, 27 : 265 - 276
  • [7] On semismooth Newton's methods for total variation minimization
    Ng, Michael K.
    Qi, Liqun
    Yang, Yu-Fei
    Huang, Yu-Mei
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 27 (03) : 265 - 276
  • [8] A SEMISMOOTH NEWTON-CG METHOD FOR CONSTRAINED PARAMETER IDENTIFICATION IN SEISMIC TOMOGRAPHY
    Boehm, Christian
    Ulbrich, Michael
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : S334 - S364
  • [9] SMOOTH AND SEMISMOOTH NEWTON METHODS FOR CONSTRAINED APPROXIMATION AND ESTIMATION
    Yin, Hongxia
    Ling, Chen
    Qi, Liqun
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (05) : 558 - 589
  • [10] ON NEWTON'S METHOD FOR SEMISMOOTH EQUATIONS
    Argyros, I. K.
    Gonzalez, D.
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,