The structural basis of cysteine aminoacylation of tRNAPro by prolyl-tRNA synthetases

被引:36
|
作者
Kamtekar, S
Kennedy, WD
Wang, JM
Stathopoulos, C
Söll, D
Steitz, TA
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[3] Yale Univ, Sch Med, Dept Pediat, New Haven, CT 06510 USA
[4] Howard Hughes Med Inst, New Haven, CT 06520 USA
关键词
D O I
10.1073/pnas.0437911100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cysteinyl synthetase is an essential enzyme required for protein synthesis. Genes encoding this protein have not been identified in Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, or Methanopyrus kandleri. It has previously been proposed that the prolyl-tRNA synthetase (ProRS) enzymes in these organisms recognize either proline or cysteine and can amino-acylate their cognate tRNAs through a dual-specificity mechanism. We report five crystal structures at resolutions between 2.6 and 3.2 Angstrom: apo M. jannaschii ProRS, and M. thermautotrophicus ProRS in apo form and in complex with cysteinyl-sulfamoyl-, prolyl-sulfamoyl and alanyl-sulfamoyl-adenylates, These aminoacyl-adenylate analogues bind to a single active-site pocket and induce an identical set of conformational changes in loops around the active site when compared with the ligand-free conformation of ProRS. The cysteinyl- and prolyl-aderylate analogues have similar, nanomolar affinities for M. thermautotrophicus ProRS. Homology modeling of tRNA onto these adenylate complexes places the 3'-OH of A76 in an appropriate position for the transfer of any of the three amino acids to tRNA. Thus, these structures explain recent biochemical experiments showing that M. jannaschii ProRS misacylates tRNAPro with cysteine, and argue against the proposal that these archaeal ProRS enzymes possess the dual capacity to aminoacylate both tRNA(Pro) and tRNA(Cys) with their cognate amino acids.
引用
收藏
页码:1673 / 1678
页数:6
相关论文
共 50 条
  • [41] Structural basis for tRNA decoding and aminoacylation sensing by T-box riboregulators
    Battaglia, Robert A.
    Grigg, Jason C.
    Ke, Ailong
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2019, 26 (12) : 1106 - +
  • [42] Structural basis for tRNA decoding and aminoacylation sensing by T-box riboregulators
    Robert A. Battaglia
    Jason C. Grigg
    Ailong Ke
    Nature Structural & Molecular Biology, 2019, 26 : 1106 - 1113
  • [43] Inhibition of Prolyl-tRNA Synthetase As a Novel Therapeutic Target for Systemic Sclerosis
    Lee, Caroline H.
    Yoon, Seong-Jin
    Cho, Minjae
    Park, Joon Seok
    Kim, Yena
    Ju, Ji Hyeon
    Bae, Da-Jeong
    Park, Choon-Sik
    Kim, Jong Hyun
    Kim, Sunghoon
    Lee, Bongyong
    ARTHRITIS & RHEUMATOLOGY, 2018, 70
  • [44] Pre-transfer editing by class II prolyl-tRNA synthetase - Role of aminoacylation active site in "selective release" of noncognate amino acids
    Hati, Sanchita
    Ziervogel, Brigitte
    SternJohn, Julius
    Wong, Fai-Chu
    Nagan, Maria C.
    Rosen, Abbey E.
    Siliciano, Paul G.
    Chihade, Joseph W.
    Musier-Forsyth, Karin
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (38) : 27862 - 27872
  • [45] Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion
    Takatsugu Kobayashi
    Osamu Nureki
    Ryuichiro Ishitani
    Anna Yaremchuk
    Michael Tukalo
    Stephen Cusack
    Kensaku Sakamoto
    Shigeyuki Yokoyama
    Nature Structural & Molecular Biology, 2003, 10 : 425 - 432
  • [46] Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis
    Jain, Vitul
    Yogavel, Manickam
    Oshima, Yoshiteru
    Kikuchi, Haruhisa
    Touquet, Bastien
    Hakimi, Mohamed-Ali
    Sharma, Amit
    STRUCTURE, 2015, 23 (05) : 819 - 829
  • [47] Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia
    Larson, Eric T.
    Kim, Jessica E.
    Napuli, Alberto J.
    Verlinde, Christophe L. M. J.
    Fan, Erkang
    Zucker, Frank H.
    Van Voorhis, Wesley C.
    Buckner, Frederick S.
    Hol, Wim G. J.
    Merritt, Ethan A.
    ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2012, 68 : 1194 - 1200
  • [48] Effects of Distal Mutations on Prolyl-Adenylate Formation of Escherichia coli Prolyl-tRNA Synthetase
    Jonathan Zajac
    Heidi Anderson
    Lauren Adams
    Dechen Wangmo
    Shanzay Suhail
    Aimee Almen
    Lauren Berns
    Breanna Coerber
    Logan Dawson
    Andrea Hunger
    Julia Jehn
    Joseph Johnson
    Naomi Plack
    Steven Strasser
    Murphi Williams
    Sudeep Bhattacharyya
    Sanchita Hati
    The Protein Journal, 2020, 39 : 542 - 553
  • [49] Correction: Prolyl-tRNA synthetase as a novel therapeutic target in multiple myeloma
    Keiji Kurata
    Anna James-Bott
    Mark A. Tye
    Leona Yamamoto
    Mehmet K. Samur
    Yu-Tzu Tai
    James Dunford
    Catrine Johansson
    Filiz Senbabaoglu
    Martin Philpott
    Charlotte Palmer
    Karthik Ramasamy
    Sarah Gooding
    Mihaela Smilova
    Giorgia Gaeta
    Manman Guo
    John C. Christianson
    N. Connor Payne
    Kritika Singh
    Kubra Karagoz
    Matthew E. Stokes
    Maria Ortiz
    Patrick Hagner
    Anjan Thakurta
    Adam Cribbs
    Ralph Mazitschek
    Teru Hideshima
    Kenneth C. Anderson
    Udo Oppermann
    Blood Cancer Journal, 13
  • [50] Aminoacylation at the atomic level in class IIa aminoacyl-tRNA synthetases
    Arnez, JG
    Sankaranarayanan, R
    Dock-Bregeon, AC
    Francklyn, CS
    Moras, D
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2000, : 23 - 27