PAPR reduction of OFDM signals using partial transmit sequences and Reed-Muller codes

被引:20
|
作者
Chen, Houshou [1 ]
Liang, Hsinying
机构
[1] Natl Chung Hsing Univ, Dept Elect Engn, Taichung 402, Taiwan
[2] Natl Chung Hsing Univ, Grad Inst Commun Engn, Taichung 402, Taiwan
关键词
OFDM; PAPR; PTS; Reed-Muller codes; natural ordering; cyclic ordering;
D O I
10.1109/LCOMM.2007.070172
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This letter proposes a modified PTS technique using binary Reed-Muller (RM) codes for error correction and PAPR control in BPSK OFDM systems. A RM code is divided into the direct sum of a correcting subcode for encoding information bits and a scrambling subcode for encoding PAPR bits. The transmitted signal of the resulting QFDM sequence is selected with minimum PAPR from a number of candidates which are codewords of a coset of the scrambling subcode. We consider the RM codes in natural and cyclic orderings. Numerical results show that RM codes in cyclic ordering achieve better performance in PAPR reduction than RM codes in natural ordering.
引用
收藏
页码:528 / 530
页数:3
相关论文
共 50 条
  • [41] Peak-to-mean power control and error correction for OFDM transmission using Golay sequences and Reed-Muller codes
    Davis, JA
    Jedwab, J
    ELECTRONICS LETTERS, 1997, 33 (04) : 267 - 268
  • [42] Performance of Subcarrier-index-modulation OFDM with Partial Transmit Sequences for PAPR reduction
    Dan, Lilin
    Ma, Qianli
    Li, Fan
    Xiao, Yue
    2018 IEEE 87TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2018,
  • [43] Using Reed-Muller Codes for Classification with Rejection and Recovery
    Fentham, Daniel
    Parker, David
    Ryan, Mark
    FOUNDATIONS AND PRACTICE OF SECURITY, PT I, FPS 2023, 2024, 14551 : 36 - 52
  • [44] The Treewidth of MDS and Reed-Muller Codes
    Kashyap, Navin
    Thangaraj, Andrew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4837 - 4847
  • [45] Optimal Testing of Reed-Muller Codes
    Bhattacharyya, Arnab
    Kopparty, Swastik
    Schoenebeck, Grant
    Sudan, Madhu
    Zuckerman, David
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 488 - 497
  • [46] A NOTE ON REED-MULLER CODES - COMMENT
    KAUSHIK, ML
    DISCRETE APPLIED MATHEMATICS, 1983, 6 (02) : 213 - 214
  • [47] Hulls of projective Reed-Muller codes
    Kaplan, Nathan
    Kim, Jon-Lark
    DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (03) : 683 - 699
  • [48] THE PARAMETERS OF PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    DISCRETE MATHEMATICS, 1990, 81 (02) : 217 - 221
  • [49] Holes in Generalized Reed-Muller Codes
    Lovett, Shachar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2583 - 2586
  • [50] Minimal codewords in Reed-Muller codes
    Schillewaert, J.
    Storme, L.
    Thas, J. A.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (03) : 273 - 286