Enabling scalable parallel implementations of structured adaptive mesh refinement applications

被引:4
|
作者
Chandra, Sumir
Li, Xiaolin
Saif, Taher
Parashar, Manish
机构
[1] State Univ New Jersey, Organizat Rutgers, Appl Software Syst Lab, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA
[2] Oklahoma State Univ, Scalable Software Syst Lab, Stillwater, OK 74078 USA
来源
JOURNAL OF SUPERCOMPUTING | 2007年 / 39卷 / 02期
基金
美国国家科学基金会;
关键词
structured adaptive mesh refinement; SAMR scalability; hierarchical partitioning; bin-packing based load-balancing; MPI non-blocking communication optimization; 3-D Richtmyer-Meshkov application;
D O I
10.1007/s11227-007-0110-z
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Parallel implementations of dynamic structured adaptive mesh refinement (SAMR) methods lead to significant runtime management challenges that can limit their scalability on large systems. This paper presents a runtime engine that addresses the scalability of SAMR applications with localized refinements and high SAMR efficiencies on large numbers of processors (upto 1024 processors). The SAMR runtime engine augments hierarchical partitioning with bin-packing based load-balancing to manage the space-time heterogeneity of the SAMR grid hierarchy, and includes a communication substrate that optimizes the use of MPI non-blocking communication primitives. An experimental evaluation on the IBM SP2 supercomputer using the 3-D Richtmyer-Meshkov compressible turbulence kernel demonstrates the effectiveness of the runtime engine in improving SAMR scalability.
引用
收藏
页码:177 / 203
页数:27
相关论文
共 50 条
  • [21] Comparison of parallelization models for structured adaptive mesh refinement
    Rantakokko, J
    EURO-PAR 2004 PARALLEL PROCESSING, PROCEEDINGS, 2004, 3149 : 615 - 623
  • [22] A parallel method for adaptive refinement of a Cartesian mesh solver
    Furuyama, S
    Matsuzawa, T
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, 2003, : 395 - 402
  • [23] PRACTICAL APPLICATIONS OF ADAPTIVE MESH REFINEMENT (REZONING)
    HOFFMAN, RE
    GUERRA, FM
    HUMPHREY, DL
    COMPUTERS & STRUCTURES, 1980, 12 (04) : 639 - 655
  • [24] Adaptive mesh refinement for MHD fusion applications
    Samtaney, R
    Jardin, SC
    Colella, P
    Martin, DF
    ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 491 - 503
  • [25] PARAMESH: A parallel adaptive mesh refinement community toolkit
    MacNeice, P
    Olson, KM
    Mobarry, C
    de Fainchtein, R
    Packer, C
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 126 (03) : 330 - 354
  • [26] Parallel adaptive mesh refinement techniques for plasticity problems
    Barry, WJ
    Jones, MT
    Plassmann, PE
    ADVANCES IN ENGINEERING SOFTWARE, 1998, 29 (3-6) : 217 - 225
  • [27] Parallel adaptive mesh refinement for incompressible flow problems
    Rossi, R.
    Cotela, J.
    Lafontaine, N. M.
    Dadvand, P.
    Idelsohn, S. R.
    COMPUTERS & FLUIDS, 2013, 80 : 342 - 355
  • [28] Adaptive hybrid mesh refinement for multiphysics applications
    Khamayseh, Ahmed
    de Almeida, Valmor
    SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78
  • [29] Parallel Memory-Efficient Adaptive Mesh Refinement on Structured Triangular Meshes with Billions of Grid Cells
    Meister, Oliver
    Rahnema, Kaveh
    Bader, Michael
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (03):
  • [30] Addressing spatiotemporal and computational heterogeneity in structured adaptive mesh refinement
    Chandra, Sumir
    Parashar, Manish
    COMPUTING AND VISUALIZATION IN SCIENCE, 2006, 9 (03) : 145 - 163