Enabling scalable parallel implementations of structured adaptive mesh refinement applications

被引:4
|
作者
Chandra, Sumir
Li, Xiaolin
Saif, Taher
Parashar, Manish
机构
[1] State Univ New Jersey, Organizat Rutgers, Appl Software Syst Lab, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA
[2] Oklahoma State Univ, Scalable Software Syst Lab, Stillwater, OK 74078 USA
来源
JOURNAL OF SUPERCOMPUTING | 2007年 / 39卷 / 02期
基金
美国国家科学基金会;
关键词
structured adaptive mesh refinement; SAMR scalability; hierarchical partitioning; bin-packing based load-balancing; MPI non-blocking communication optimization; 3-D Richtmyer-Meshkov application;
D O I
10.1007/s11227-007-0110-z
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Parallel implementations of dynamic structured adaptive mesh refinement (SAMR) methods lead to significant runtime management challenges that can limit their scalability on large systems. This paper presents a runtime engine that addresses the scalability of SAMR applications with localized refinements and high SAMR efficiencies on large numbers of processors (upto 1024 processors). The SAMR runtime engine augments hierarchical partitioning with bin-packing based load-balancing to manage the space-time heterogeneity of the SAMR grid hierarchy, and includes a communication substrate that optimizes the use of MPI non-blocking communication primitives. An experimental evaluation on the IBM SP2 supercomputer using the 3-D Richtmyer-Meshkov compressible turbulence kernel demonstrates the effectiveness of the runtime engine in improving SAMR scalability.
引用
收藏
页码:177 / 203
页数:27
相关论文
共 50 条
  • [1] Enabling scalable parallel implementations of structured adaptive mesh refinement applications
    Sumir Chandra
    Xiaolin Li
    Taher Saif
    Manish Parashar
    The Journal of Supercomputing, 2007, 39 : 177 - 203
  • [2] Scalable parallel regridding algorithms for block-structured adaptive mesh refinement
    Luitjens, J.
    Berzins, M.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2011, 23 (13): : 1522 - 1537
  • [3] Automatic parallel implementations of adjoint codes for structured mesh applications
    Balogh, Gabor Daniel
    Reguly, Istvan Z.
    2020 20TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2020), 2020, : 908 - 911
  • [4] Hierarchical Partitioning Techniques for Structured Adaptive Mesh Refinement Applications
    Xiaolin Li
    Manish Parashar
    The Journal of Supercomputing, 2004, 28 : 265 - 278
  • [5] Hierarchical partitioning techniques for structured adaptive mesh refinement applications
    Li, XL
    Parashar, M
    JOURNAL OF SUPERCOMPUTING, 2004, 28 (03): : 265 - 278
  • [6] Dynamic load balancing for structured Adaptive Mesh Refinement applications
    Lan, ZL
    Taylor, VE
    Bryan, G
    PROCEEDINGS OF THE 2001 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2001, : 571 - 579
  • [7] Optimal parameter values for a parallel structured adaptive mesh refinement algorithm
    Thuné, M
    Söderberg, S
    APPLIED PARALLEL COMPUTING, PROCEEDINGS: NEW PARADIGMS FOR HPC IN INDUSTRY AND ACADEMIA, 2001, 1947 : 177 - 186
  • [8] Parallel adaptive mesh refinement
    Diachin, Lori Freitag
    Hornung, Richard
    Plassmann, Paul
    Wissink, Andy
    PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, 2006, : 143 - 162
  • [9] Hierarchical partitioning techniques for Structured Adaptive Mesh Refinement (SAMR) applications
    Li, XL
    Ramanathan, S
    Parashar, M
    2002 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, PROCEEDINGS OF THE WORKSHOPS, 2002, : 336 - 343
  • [10] AMReX: Block-structured adaptive mesh refinement for multiphysics applications
    Zhang, Weiqun
    Myers, Andrew
    Gott, Kevin
    Almgreni, Ann
    Bell, John
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2021, 35 (06): : 508 - 526