Some analytical solutions of functionally graded Kirchhoff plates

被引:62
|
作者
Apuzzo, Andrea [1 ]
Barretta, Raffaele [2 ]
Luciano, Raimondo [1 ]
机构
[1] Univ Cassino & Southern Lazio, Dept Civil & Mech Engn, I-03043 Cassino, FR, Italy
[2] Univ Naples Federico II, Dept Struct Engn & Architecture, I-80125 Naples, Italy
关键词
Plates; Elasticity; Analytical modeling; SHEAR DEFORMATION-THEORY; THERMOELASTIC DEFORMATIONS; MICROMECHANICAL MODELS; CARBON NANOTUBES; ANALOGIES; EQUATIONS;
D O I
10.1016/j.compositesb.2014.08.048
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The elastostatic problem of a functionally graded KIRCHHOFF plate, with no kinematic constraints on the boundary, under constant distributions of transverse loads per unit area and of boundary bending couples is investigated. Closed-form expressions are provided for displacements, bending twisting curvatures and moments of an isotropic plate with elastic stiffness and boundary distributed shear forces, assigned respectively in terms of the stress function and of its normal derivative of a corresponding SAINT-VENANT beam under torsion. The methodology is adopted to solve circular plates with local and ERINGEN-type elastic constitutive behaviors, providing thus new benchmarks for computational mechanics. The proposed approach can be used to obtain other exact solutions for plates whose planform coincides with the cross-section of beams for which the PRANDTL stress function is known in an analytical form. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:266 / 269
页数:4
相关论文
共 50 条
  • [31] An analytical approach for stress analysis of functionally graded annular sector plates
    Jomehzadeh, E.
    Saidi, A. R.
    Atashipour, S. R.
    MATERIALS & DESIGN, 2009, 30 (09) : 3679 - 3685
  • [32] Some problems of modelling stability of thin functionally graded plates
    Kazmierczak-Sobinska, M.
    Jedrysiak, J.
    SHELL STRUCTURES: THEORY AND APPLICATIONS, VOL 3, 2014, : 105 - 107
  • [33] Semi-analytical three-dimensional elasticity solutions for multi-directional functionally graded plates
    Lue, C. F.
    Chen, W. Q.
    Lim, C. W.
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008, 2008, : 1589 - 1593
  • [34] Symplectic Method-Based Analytical Solutions of Thermal Buckling for Shear Deformable Circular Functionally Graded Plates
    Zhang, Jinghua
    Cao, Chenxi
    Liu, Xingna
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (03)
  • [35] Analytical Solutions Based on Fourier Cosine Series for the Free Vibrations of Functionally Graded Material Rectangular Mindlin Plates
    Huang, Chiung-Shiann
    Huang, S. H.
    MATERIALS, 2020, 13 (17)
  • [36] Closed-form Analytical Solutions for Free Vibration of Rectangular Functionally Graded Thin Plates in Thermal Environment
    Xing, Y. F.
    Wang, Z. K.
    Xu, T. F.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2018, 10 (03)
  • [37] Analytical solutions of coupled functionally graded conical shells of revolution
    Muc, Aleksander
    Muc-Wierzgon, Malgorzata
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2023, 30 (01)
  • [38] Physical Nonlinearity in Porous Functionally Graded Kirchhoff Nano-plates: Modeling and Numerical experiment
    Krysko-Jr, V. A.
    Awrejcewicz, J.
    Zhigalov, M. V.
    Tebyakin, A. D.
    Krysko, V. A.
    APPLIED MATHEMATICAL MODELLING, 2023, 123 : 39 - 74
  • [39] Analogies between KIRCHHOFF plates and functionally graded SAINT-VENANT beams under torsion
    Barretta, Raffaele
    Luciano, Raimondo
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2015, 27 (03) : 499 - 505
  • [40] Analytical Solutions to Density Functionally Graded Piezoelectric Cantilever Beams
    Jiang Ai-min
    Wu Yi-li
    2009 5TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-8, 2009, : 2253 - 2257