On nonlinear integro-differential operators in generalized Orlicz-Sobolev spaces

被引:0
|
作者
Bardaro, C
Musielak, J
Vinti, G
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-60769 Poznan, Poland
[3] Univ Perugia, Dipartimento Matemat, CNR, I-06100 Perugia, Italy
关键词
approximation by strongly singular integrals; Orlicz-Sobolev space; modular space; nonlinear integro-differential operator; generalized Lipschitz condition;
D O I
10.1006/jath.2000.3463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlinear integral operator T of the form (Tf)(s) = integral(G) K(t, f(sigma(s, t))) d mu(t), for s is an element of G, is defined and investigated in the measure space (G, Sigma, mu), where f and K are vector-valued functions with values in normed linear spaces E and F, respectively. The results are applied to the case of integro-differential operators in generalized Orlicz-Sobolev spaces. There are studied problems of existence, embeddings, and approximation by means of T. (C) 2000 Academic Press.
引用
收藏
页码:238 / 251
页数:14
相关论文
共 50 条
  • [41] HARDY INEQUALITIES IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Salort, Ariel M.
    PUBLICACIONS MATEMATIQUES, 2022, 66 (01) : 183 - 195
  • [42] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [43] Magnetic fractional order Orlicz-Sobolev spaces
    Fernandez Bonder, Julian
    Salort, Ariel M.
    STUDIA MATHEMATICA, 2021, 259 (01) : 1 - 24
  • [44] A sharp embedding theorem for Orlicz-Sobolev spaces
    Cianchi, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1996, 45 (01) : 39 - 65
  • [45] EMBEDDING THEOREMS ON THE FRACTIONAL ORLICZ-SOBOLEV SPACES
    Jung, Tacksun
    Choi, Q-Heung
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (01): : 56 - 63
  • [46] Nonhomogeneous multiparameter problems in Orlicz-Sobolev spaces
    Radulescu, Vicentiu D.
    dos Santos, Gelson C. G.
    Tavares, Leandro S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2555 - 2574
  • [47] Γ-CONVERGENCE OF INHOMOGENEOUS FUNCTIONALS IN ORLICZ-SOBOLEV SPACES
    Bocea, Marian
    Mihailescu, Mihai
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2015, 58 (02) : 287 - 303
  • [48] IMBEDDING THEOREMS FOR WEIGHTED ORLICZ-SOBOLEV SPACES
    KRBEC, M
    OPIC, B
    PICK, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 46 : 543 - 556
  • [49] Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (7-8) : 401 - 406
  • [50] Optimal Domain Spaces in Orlicz-Sobolev Embeddings
    Cianchi, Andrea
    Musil, Vit
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (03) : 925 - 966