Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

被引:26
|
作者
He, Tianqi [1 ]
Shi, Rongqi [1 ]
Peng, Jie [1 ]
Zhuge, Weilin [2 ]
Zhang, Yangjun [2 ]
机构
[1] Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Automot Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
organic Rankine cycle; PEMFC; waste heat recovery; heat pump; FUEL-CELL SYSTEM; THERMAL MANAGEMENT; MODEL; WATER; STACK;
D O I
10.3390/en9040267
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC), which are named the organic Rankine cycle (ORC), and heat pump (HP) combined organic Rankine cycle (HPORC). The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 degrees C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An Outlook for Waste Heat Recovery Concept for Aircraft Engine Using Organic Rankine Cycle
    Abidin, N. H. H. Zainol
    Saadon, S.
    JOURNAL OF AERONAUTICS ASTRONAUTICS AND AVIATION, 2020, 52 (01): : 95 - 103
  • [32] A novel design methodology for waste heat recovery systems using organic Rankine cycle
    Budisulistyo, Denny
    Krumdieck, Susan
    ENERGY CONVERSION AND MANAGEMENT, 2017, 142 : 1 - 12
  • [33] Study of Gasoline Engine Waste Heat Recovery by Organic Rankine Cycle
    Wang, E. H.
    Zhang, H. G.
    Fan, B. Y.
    Liang, H.
    Ouyang, M. G.
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 6071 - +
  • [34] Effect of working fluids on organic Rankine cycle for waste heat recovery
    Liu, BT
    Chien, KH
    Wang, CC
    ENERGY, 2004, 29 (08) : 1207 - 1217
  • [35] Neuro-PID control of heat exchanger in an organic Rankine cycle system for waste heat recovery
    North China Electric Power University, Beijing, 102206, China
    Int. Conf. Adv. Mechatronic Syst., ICAMechS - Final Program, 2011, (191-195):
  • [36] Comparison of Mini Organic Rankine Cycle Plants for Waste Heat Recovery
    Di Lorenzo, Giuseppina
    Giovannelli, Ambra
    Bartocci, Pietro
    Fantozzi, Francesco
    74TH ATI NATIONAL CONGRESS: ENERGY CONVERSION: RESEARCH, INNOVATION AND DEVELOPMENT FOR INDUSTRY AND TERRITORIES, 2019, 2191
  • [37] Review of organic Rankine cycle (ORC) architectures for waste heat recovery
    Lecompte, Steven
    Huisseune, Henk
    van den Broek, Martijn
    Vanslambrouck, Bruno
    De Paepe, Michel
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 47 : 448 - 461
  • [38] WASTE HEAT RECOVERY FROM CLOSED BRAYTON CYCLE USING ORGANIC RANKINE CYCLE: THERMODYNAMIC ANALYSIS
    Yari, Mortaza
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4, 2009, : 413 - 424
  • [39] Waste heat recovery from a 1180 kW proton exchange membrane fuel cell (PEMFC) system by Recuperative organic Rankine cycle (RORC)
    Sheshpoli, Mohamad Alijanpour
    Ajarostaghi, Seyed Soheil Mousavi
    Delavar, Mojtaba Aghajani
    ENERGY, 2018, 157 : 353 - 366
  • [40] Study of waste heat recovery system for marine diesel engine based on organic rankine cycle
    Song, Jian
    Song, Yin
    Gu, Chun-Wei
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (09): : 1898 - 1901