Object tracking based on optical flow and depth

被引:3
|
作者
Okada, R
Shirai, Y
Miura, J
机构
关键词
D O I
10.1109/MFI.1996.572231
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a method to track an object based on optical flow and depth. The velocity and the depth of the target object are estimated from the histograms of the velocity and that of the disparity. A target region is extracted by Baysian inference using optical flow, disparity and Me predicted target location. This method works even if tracking with either velocity data or disparity data alone may fail. Occlusion of the target can also be detected from the abrupt change of the disparity of the target region. Our method successfully tracked a moving person using a real image sequence.
引用
收藏
页码:565 / 571
页数:7
相关论文
共 50 条
  • [31] Improving Multiple Object Tracking with Optical Flow and Edge Preprocessing
    Beaupre, David-Alexandre
    Bilodeau, Guillaume-Alexandre
    Saunier, Nicolas
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 158 - 163
  • [32] Weighted Optical Flow Prediction and Attention Model for Object Tracking
    Cao, Wenming
    Li, Yuhong
    He, Zhiquan
    IEEE ACCESS, 2019, 7 : 144885 - 144894
  • [33] Visual Object Tracking Using Perceptron Forests and Optical Flow
    Nakum, Gaurav
    Guha, Prithwijit
    Baruah, Rashmi Dutta
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II, 2019, 11942 : 525 - 532
  • [34] Deep Kalman Filter with Optical Flow for Multiple Object Tracking
    Chen, Yaran
    Zhao, Dongbin
    Li, Haoran
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3036 - 3041
  • [35] Online Depth Image-Based Object Tracking with Sparse Representation and Object Detection
    Wei-Long Zheng
    Shan-Chun Shen
    Bao-Liang Lu
    Neural Processing Letters, 2017, 45 : 745 - 758
  • [36] Online Depth Image-Based Object Tracking with Sparse Representation and Object Detection
    Zheng, Wei-Long
    Shen, Shan-Chun
    Lu, Bao-Liang
    NEURAL PROCESSING LETTERS, 2017, 45 (03) : 745 - 758
  • [37] Contour-based object tracking in video scenes through optical flow and gabor features
    Kanagamalliga, S.
    Vasuki, S.
    OPTIK, 2018, 157 : 787 - 797
  • [38] High-speed object tracking in ordinary surroundings based on temporally evaluated optical flow
    Okada, R
    Oaki, J
    Yamamoto, D
    Kondoh, N
    Miyazaki, H
    Uesugi, K
    Amemiya, J
    Shirakawa, K
    Kunimatsu, A
    IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 242 - 247
  • [39] Object tracking using Harris corner points based optical flow propagation and Kalman filter
    Salmane, Houssam
    Ruichek, Yassine
    Khoudour, Louahdi
    2011 14TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2011, : 67 - 73
  • [40] An Optical Flow Based Multi-Object Tracking Approach Using Sequential Convex Programming
    Xu, Qingwen
    He, Zhengpeng
    Chen, Zhang
    Jiang, Yuning
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 1216 - 1221