Experimental validation of a 4D dose calculation routine for pencil beam scanning proton therapy

被引:36
|
作者
Pfeiler, Tina [1 ,2 ]
Baeumer, Christian [1 ]
Engwall, Erik [3 ]
Geismar, Dirk [1 ]
Spaan, Bernhard [2 ]
Timmermann, Beate [1 ,4 ,5 ]
机构
[1] West German Proton Therapy Ctr Essen WPE, Essen, Germany
[2] TU Dortmund Univ, Expt Phys 5, Dortmund, Germany
[3] RaySearch Labs AB, Stockholm, Sweden
[4] Univ Hosp Essen, Clin Particle Therapy, Essen, Germany
[5] West German Canc Ctr WTZ, Essen, Germany
来源
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK | 2018年 / 28卷 / 02期
关键词
Proton therapy; Pencil beam scanning; Respiratory motion; Interplay effect; 4D dose calculation; DEFORMABLE IMAGE REGISTRATION; EXPERIMENTAL-VERIFICATION; RESPIRATORY MOTION; PARTICLE THERAPY; TARGET MOTION; UNCERTAINTIES; INTERPLAY; SPOT; RADIOTHERAPY; WORKSHOPS;
D O I
10.1016/j.zemedi.2017.07.005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Respiratory induced organ motion poses a major challenge for high-precision radiotherapy such as pencil beam scanning proton therapy (PBS). In order to employ PBS for target regions affected by respiratory motion, the implementation of dedicated motion mitigation techniques should be considered and residual uncertainties need to be assessed. For the latter purpose, a routine simulating the delivery of a scanned proton beam to a moving target was developed and implemented in the commercial treatment planning system RayStation. The time structure of the beam delivery was extracted from electronic irradiation protocols of the delivery system. Alternatively to electronic irradiation protocols, an empirical time model of the beam delivery was created to allow for prospective estimations of interplay effects between target motion and pencil beam scanning. The experimental validation of the routine was performed using a two-dimensional ionization chamber array and a dynamic phantom. A 4D CT data set, including 10 respiratory phases, provided the spatial temporal information about the phantom motion. The dosimetric comparison of the measured and the calculated dose distribution yielded gamma pass rates above 96% using a 3% dose difference and a 3 mm distance to agreement criterion. Thus, a tool for the evaluation of interplay effects is available in a clinical software environment and patient-specific quality assurance can be extended to dynamic treatment scenarios.
引用
收藏
页码:121 / 133
页数:13
相关论文
共 50 条
  • [1] Experimental Validation of a 4D Dose Calculation for Scanned Proton Beam Therapy
    Krieger, M.
    Klimpki, G.
    Fattori, G.
    Hrbacek, J.
    Oxley, D.
    Safai, S.
    Weber, D.
    Lomax, A.
    Zhang, Y.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3180 - 3180
  • [2] 4D dose calculation for pencil beam scanning proton therapy of pancreatic cancer using repeated 4DMRI datasets
    Dolde, Kai
    Naumann, Patrick
    David, Christian
    Gnirs, Regula
    Kachelriess, Marc
    Lomax, Antony John
    Saito, Nami
    Weber, Damien Charles
    Pfaffenberger, Asja
    Zhang, Ye
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (16):
  • [3] Implementation of 4D proton therapy treatments with pencil beam scanning (PBS)
    Fracchiolla, F.
    Dionisi, F.
    Hild, S.
    Giacomelli, I.
    Lorentini, S.
    Engwall, E.
    Esposito, P. G.
    Amichetti, M.
    Schwarz, M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S1110 - S1111
  • [4] Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy
    Krieger, Miriam
    Klimpki, Grischa
    Fattori, Giovanni
    Hrbacek, Jan
    Oxley, David
    Safai, Sairos
    Weber, Damien C.
    Lomax, Antony J.
    Zhang, Ye
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (05):
  • [5] Clinical validation of Monte Carlo dose calculation for pencil beam scanning proton therapy.
    Widesott, L.
    Lorentini, S.
    Fracchiolla, F.
    Farace, P.
    Schwarz, M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S45 - S46
  • [6] Experimental validation of a 4D dynamic dose calculation model for proton pencil beam scanning without spot time stamp considering free-breathing motion
    Tominaga, Yuki
    Oita, Masataka
    Miyata, Junya
    Kato, Takahiro
    [J]. MEDICAL PHYSICS, 2024, 51 (01) : 566 - 578
  • [7] Experimental Validation of a Log File-Based Dose Reconstruction and Accumulation for 4D Adaptive Pencil Beam Scanned Proton Therapy
    Meijers, A.
    Both, S.
    Langendijk, J. A.
    Knopf, A.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E753 - E754
  • [8] Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning
    Fracchiolla, F.
    Lorentini, S.
    Widesott, L.
    Schwarz, M.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (21): : 8601 - 8619
  • [9] A motion model-guided 4D dose reconstruction for pencil beam scanned proton therapy
    Duetschler, A.
    Huang, L.
    Fattori, G.
    Meier, G.
    Bula, C.
    Hrbacek, J.
    Safai, S.
    Weber, D. C.
    Lomax, A. J.
    Zhang, Ye
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (11):
  • [10] 4D evaluation of proton pencil beam scanning and double scattering for hepatocellular carcinoma
    Pfeiler, T.
    Baeumer, C.
    Blanck, O.
    Chan, M.
    Engwall, E.
    Geismar, D.
    Peters, S.
    Spaan, B.
    Wulff, J.
    Timmermann, B.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S1105 - S1106