Galilean DKP theory and Bose-Einstein condensation

被引:19
|
作者
Abreu, L. M. [1 ]
Gadelha, Alexandre L. [1 ]
Pimentel, B. M. [2 ]
Santos, E. S. [1 ]
机构
[1] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
[2] Sao Paulo State Univ, UNESP, IFT, BR-01140070 Sao Paulo, Brazil
关键词
Bose-Einstein condensation; Galilean covariance; DKP theory; DUFFIN-KEMMER-PETIAU; COVARIANCE; EQUATIONS; FIELDS;
D O I
10.1016/j.physa.2014.10.049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work is devoted to the development of Galilean Duffin-Kemmer-Petiau (DKP) theory at finite temperature and to the study of Bose-Einstein condensation (BEC). This DKP-like theory is formulated in a 5-dimensional manifold, in which the Galilei-covariant first-order wave equations represent the covariant version of the Schrodinger and non-relativistic vector field equations. The thermodynamics is studied within the Matsubara (imaginary-time) formalism, and BEC is analyzed in both spin-0 and spin-1 sectors of the theory, by using the appropriate representation of Galilean DKP algebra. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:612 / 621
页数:10
相关论文
共 50 条
  • [21] BOSE-EINSTEIN CONDENSATION IN AN EINSTEIN UNIVERSE
    SINGH, S
    PATHRIA, RK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (15): : 2983 - 2994
  • [22] Chiral perturbation theory and Bose-Einstein condensation in QCD
    Andersen, Jens O.
    Johnsrud, Martin Kjollesdal
    Yu, Qing
    Zhou, Hua
    PHYSICAL REVIEW D, 2025, 111 (03)
  • [23] New quantum statistics and the theory of Bose-Einstein condensation
    Barbarani, Vito
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (10) : 2401 - 2428
  • [24] Lee-Yang theory of Bose-Einstein condensation
    Brange, Fredrik
    Pyharanta, Tuomas
    Heinonen, Eppu
    Brandner, Kay
    Flindt, Christian
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [25] Bose-Einstein condensation in Horava-Lifshitz theory
    Furtado, J.
    Assuncao, J. F.
    Ramos, A. C. A.
    EPL, 2021, 134 (01)
  • [26] COHERENCE THEORY OF BOSE-EINSTEIN CONDENSATION .2.
    KANO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (02) : 310 - 314
  • [27] Generalized Bose-Einstein Condensation Formalism and BCS Theory
    Grether, M.
    de Llano, M.
    Tolmachev, V. V.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2013, 26 (05) : 1915 - 1919
  • [28] Effective field theory approach to Bose-Einstein condensation
    Liu, WV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (21): : 2103 - 2114
  • [29] MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION
    Bao, Weizhu
    Cai, Yongyong
    KINETIC AND RELATED MODELS, 2013, 6 (01) : 1 - 135
  • [30] More accurate theory for Bose-Einstein condensation fraction
    Biswas, Shyamal
    PHYSICS LETTERS A, 2008, 372 (10) : 1574 - 1578