On the complexities of the incremental bottleneck and bottleneck terminal Steiner tree problems

被引:0
|
作者
Chen, Yen Hung [1 ]
机构
[1] Univ Taipei, Dept Comp Sci, Taipei, Taiwan
关键词
computational complexity; approximation complexity (approximation class); network design; the class of the incremental network design problems; the bottleneck Steiner tree problem; the bottleneck terminal Steiner tree problem; APPROXIMATION ALGORITHM; NETWORK DESIGN; BOUNDS; RATIO; FULL;
D O I
10.1109/ICS.2016.9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given a graph G = (V, E) with non-negative edge lengths, a subset R subset of V, a Steiner tree for R in G is an acyclic subgraph of G interconnecting all vertices in R and a terminal Steiner tree is defined to be a Steiner tree in G with all the vertices of R as its leaves. A bottleneck edge of a Steiner tree is an edge with the largest length in the Steiner tree. The bottleneck Steiner tree problem (BSTP) (respectively, the bottleneck terminal Steiner tree problem (BTSTP)) is to find a Steiner tree (respectively, a terminal Steiner tree) for R in G with minimum length of a bottleneck edge. For any arbitrary tree T, len(b)(T) denotes the length of a bottleneck edge in T. Let T-opt(G, BSTP) and T-opt(G, BTSTP) denote the optimal solutions for the BSTP and the BTSTP in G, respectively. Given a graph G = (V, E) with non-negative edge lengths, a subset E-0 subset of E, a number h = vertical bar E\ E-0 vertical bar, and a subset R subset of V, the incremental bottleneck Steiner tree problem (respectively, the incremental bottleneck terminal Steiner tree problem) is to find a sequence of edge sets {E-0 subset of E-1 subset of E-2 subset of ... subset of E-h = E} with vertical bar E-i \ Ei-1 vertical bar = 1 such that Sigma(h)(i=1) len(b)(T-opt(G(i), BSTP)) (respectively, Sigma(h)(i=1) len(b)(T-opt(G(i), BTSTP))) is minimized, where G(i) = (V, E-i). In this paper, we prove that the incremental bottleneck Steiner tree problem is NP-hard. Then we show that there is no polynomial time approximation algorithm achieving a performance ratio of (1 - epsilon) x ln vertical bar R vertical bar, 0 < epsilon < 1, for the incremental bottleneck terminal Steiner tree problem unless NP subset of DTIME(vertical bar R vertical bar(log) (log) (vertical bar R vertical bar)).
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Approximation algorithm for bottleneck Steiner tree problem in the Euclidean plane
    Li, ZM
    Zhu, DM
    Ma, SH
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2004, 19 (06) : 791 - 794
  • [22] The tree center problems and the relationship with the bottleneck knapsack problems
    Shioura, A
    Shigeno, M
    NETWORKS, 1997, 29 (02) : 107 - 110
  • [23] BOTTLENECK STEINER TREES IN THE PLANE
    SARRAFZADEH, M
    WONG, CK
    IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (03) : 370 - 374
  • [24] On bilevel minimum and bottleneck spanning tree problems
    Shi, Xueyu
    Zeng, Bo
    Prokopyev, Oleg A.
    NETWORKS, 2019, 74 (03) : 251 - 273
  • [25] Nearly optimal solution for restricted euclidean bottleneck Steiner tree problem
    Li, Zimao
    Xiao, Wenying
    Journal of Networks, 2014, 9 (04) : 1000 - 1004
  • [26] The Euclidean Bottleneck Steiner Path Problem
    Abu-Affash, A. Karim
    Carmi, Paz
    Katzi, Matthew J.
    Segal, Michael
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 440 - 447
  • [27] Bottleneck bichromatic full Steiner trees
    Abu-Affash, A. Karim
    Bhore, Sujoy
    Carmi, Paz
    Chakraborty, Dibyayan
    INFORMATION PROCESSING LETTERS, 2019, 142 : 14 - 19
  • [28] Optimal and approximate bottleneck Steiner trees
    Ganley, JL
    Salowe, JS
    OPERATIONS RESEARCH LETTERS, 1996, 19 (05) : 217 - 224
  • [29] An efficient algorithm for the Steiner Tree Problem with revenue, bottleneck and hop objective functions
    Pinto, Leizer Lima
    Laporte, Gilbert
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 207 (01) : 45 - 49
  • [30] Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances
    Lorenzen, Stephan S.
    Winter, Pawel
    EXPERIMENTAL ALGORITHMS, SEA 2016, 2016, 9685 : 217 - 230