Boltzmann equation and Monte Carlo studies of electron transport in resistive plate chambers

被引:13
|
作者
Bosnjakovic, D. [1 ,2 ]
Petrovic, Z. Lj [1 ,2 ]
White, R. D. [3 ]
Dujko, S. [1 ]
机构
[1] Univ Belgrade, Inst Phys, Belgrade 11070, Serbia
[2] Univ Belgrade, Fac Elect Engn, Belgrade 11120, Serbia
[3] James Cook Univ, ARC Ctr Antimatter Matter Studies, Sch Engn & Phys Sci, Townsville, Qld 4811, Australia
基金
澳大利亚研究理事会;
关键词
resistive plate chambers; Boltzmann equation; Monte Carlo simulation; electron transport coefficients; negative differential conductivity; NEGATIVE DIFFERENTIAL CONDUCTIVITY; VELOCITY DISTRIBUTION FUNCTION; SIMULATION; GASES; COEFFICIENTS; PHYSICS; SWARMS; DEFINITION; ATTACHMENT; DIFFUSION;
D O I
10.1088/0022-3727/47/43/435203
中图分类号
O59 [应用物理学];
学科分类号
摘要
A multi term theory for solving the Boltzmann equation and Monte Carlo simulation technique are used to investigate electron transport in Resistive Plate Chambers (RPCs) that are used for timing and triggering purposes in many high energy physics experiments at CERN and elsewhere. Using cross sections for electron scattering in C2H2F4, iso-C4H10 and SF6 as an input in our Boltzmann and Monte Carlo codes, we have calculated data for electron transport as a function of reduced electric field E/N in various C2H2F4/iso-C4H10/SF6 gas mixtures used in RPCs in the ALICE, CMS and ATLAS experiments. Emphasis is placed upon the explicit and implicit effects of non-conservative collisions (e.g. electron attachment and/or ionization) on the drift and diffusion. Among many interesting and atypical phenomena induced by the explicit effects of non-conservative collisions, we note the existence of negative differential conductivity (NDC) in the bulk drift velocity component with no indication of any NDC for the flux component in the ALICE timing RPC system. We systematically study the origin and mechanisms for such phenomena as well as the possible physical implications which arise from their explicit inclusion into models of RPCs. Spatially-resolved electron transport properties are calculated using a Monte Carlo simulation technique in order to understand these phenomena.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Convergence of A Distributional Monte Carlo Method for the Boltzmann Equation
    Schrock, Christopher R.
    Wood, Aihua W.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (01) : 102 - 121
  • [22] Asymptotic preserving Monte Carlo methods for the Boltzmann equation
    Pareschi, L
    Russo, G
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5): : 415 - 430
  • [23] THE MOMENT GUIDED MONTE CARLO METHOD FOR THE BOLTZMANN EQUATION
    Dimarco, Giacomo
    KINETIC AND RELATED MODELS, 2013, 6 (02) : 291 - 315
  • [24] Time relaxed Monte Carlo methods for the Boltzmann equation
    Pareschi, L
    Russo, G
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (04): : 1252 - 1272
  • [25] MONTE-CARLO AND BOLTZMANN CALCULATIONS OF ELECTRON-TRANSPORT IN N-2
    BRAGLIA, GL
    ROMANO, L
    DILIGENTI, M
    LETTERE AL NUOVO CIMENTO, 1982, 35 (06): : 193 - 199
  • [26] Aging studies for the CMS improved Resistive Plate Chambers
    Ferreira Filho, M. Barroso
    Samalan, A.
    Tytgat, M.
    El Sawy, M.
    Alves, G. A.
    Marujo, F.
    Coelho, E. A.
    Da Costa, E. M.
    Nogima, H.
    Santoro, A.
    De Souza, S. Fonseca
    Damiao, D. De Jesus
    Thiel, M.
    Amarilo, K. Mota
    Aleksandrov, A.
    Hadjiiska, R.
    Iaydjiev, P.
    Rodozov, M.
    Shopova, M.
    Soultanov, G.
    Dimitrov, A.
    Litov, L.
    Pavlov, B.
    Petkov, P.
    Petrov, A.
    Shumka, E.
    Qian, S. J.
    Kou, H.
    Liu, Z. -A.
    Zhao, J.
    Song, J.
    Hou, Q.
    Diao, W.
    Cao, P.
    Avila, C.
    Barbosa, D.
    Cabrera, A.
    Florez, A.
    Fraga, J.
    Reyes, J.
    Assran, Y.
    Mahmoud, M. A.
    Mohammed, Y.
    Crotty, I.
    Laktineh, I.
    Grenier, G.
    Gouzevitch, M.
    Mirabito, L.
    Shchablo, K.
    Bagaturia, I.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1055
  • [27] Gas Proportion Studies on the Operation of Resistive Plate Chambers
    Raveendrababu, K.
    Behera, P. K.
    XXII DAE HIGH ENERGY PHYSICS SYMPOSIUM, 2018, 203 : 455 - 458
  • [28] Performance and aging studies of BaBar resistive plate chambers
    Band, H. R.
    Hollar, J.
    Tan, P.
    Anulli, F.
    Baldini, R.
    Calcaterra, A.
    de Sangro, R.
    Finocchiaro, G.
    Patteri, P.
    Piccolo, M.
    Zallo, A.
    Cheng, C. H.
    Lange, D. J.
    Wright, D. M.
    Messner, R.
    Wisniewskit, W. J.
    Pappagallo, M.
    Andreotti, M.
    Bettoni, D.
    Calabrese, R.
    Cibinetto, G.
    Luppi, E.
    Negrini, M.
    Capra, R.
    Contri, R.
    LoVetere, M.
    Monge, R.
    Passaggio, S.
    Robutti, E.
    Tosi, S.
    Cartaro, C.
    De Nardo, G.
    Fabozzi, F.
    Lista, L.
    Monorchio, D.
    Piccolo, D.
    Paolucci, P.
    Covarelli, R.
    Pioppi, M.
    Carpinelli, M.
    Forti, F.
    Neri, N.
    Paoloni, E.
    Bellini, F.
    Cavoto, G.
    Di Marco, E.
    D'Orazio, A.
    del Re, D.
    Faccini, R.
    Ferrarotto, F.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2006, 158 : 139 - 142
  • [29] MCBTE: A variance-reduced Monte Carlo solution of the linearized Boltzmann transport equation for phonons
    Pathak, Abhishek
    Pawnday, Avinash
    Roy, Aditya Prasad
    Aref, Amjad J.
    Dargush, Gary F.
    Bansal, Dipanshu
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 265
  • [30] Coupling the Monte-Carlo Method with Semi-Analytical Solutions of the Boltzmann Transport Equation
    Brugger, S. C.
    Peikert, V.
    Schenk, A.
    SISPAD: 2008 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2008, : 297 - +