Iterated sumsets and Hilbert functions

被引:0
|
作者
Eliahou, Shalom [1 ,2 ]
Mazumdar, Eshita [3 ]
机构
[1] Univ Littoral Cote dOpale, UR 2597, LMPA Lab Math Pures & Appl Joseph Lionville, F-62100 Calais, France
[2] CNRS, FR2037, Paris, France
[3] Ahmedabad Univ, Sch Arts & Sci, Cent Campus, Ahmadabad 380009, Gujarat, India
关键词
Plunnecke's inequality; Standard graded algebra; Macaulay's theorem; Binomial representation;
D O I
10.1016/j.jalgebra.2021.11.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a finite subset of an abelian group (G, +). For h is an element of N, let hA = A + ... + A denote the h-fold iterated sumset of A. If vertical bar A vertical bar >= 2, understanding the behavior of the sequence of cardinalities |hA| is a fundamental problem in additive combinatorics. For instance, if vertical bar hA vertical bar is known, what can one say about vertical bar(h - 1)A vertical bar and vertical bar(h + 1)A vertical bar? The current classical answer is given by vertical bar(h- 1)A vertical bar >= vertical bar hA vertical bar((h-1)/h), a consequence of Plunnecke's inequality based on graph theory. We tackle here this problem with a completely new approach, namely by invoking Macaulay's classical 1927 theorem on the growth of Hilbert functions of standard graded algebras. With it, we first obtain demonstrably strong bounds on |hA| as h grows. Then, using a recent condensed version of Macaulay's theorem, we derive the above Plunnecke-based estimate and significantly improve it in the form vertical bar(h- 1)A vertical bar >= theta(x, h) vertical bar hA vertical bar((h-1)/h) for h >= 2 and some explicit factor theta(x, h) > 1, where x is an element of R satisfies x >= h and vertical bar hA vertical bar = (x/h). Equivalently and more simply,vertical bar(h- 1)A vertical bar >= h/x vertical bar hA vertical bar.We show that theta(x, h) often exceeds 1.5 and even 2, and asymptotically tends to e 2.718 as x grows and h lies in a suitable range depending on x. (C)2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 294
页数:21
相关论文
共 50 条
  • [1] On the Dimension of Iterated Sumsets
    Schmeling, Jorg
    Shmerkin, Pablo
    RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, : 55 - +
  • [2] Iterated sumsets and setpartitions
    David J. Grynkiewicz
    The Ramanujan Journal, 2020, 52 : 499 - 518
  • [3] Iterated sumsets and setpartitions
    Grynkiewicz, David J.
    RAMANUJAN JOURNAL, 2020, 52 (03): : 499 - 518
  • [4] Relative sizes of iterated sumsets
    Kravitz, Noah
    JOURNAL OF NUMBER THEORY, 2025, 272 : 113 - 128
  • [5] Iterated sumsets and subsequence sums
    Grynkiewicz, David J.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 160 : 136 - 167
  • [6] Dimension growth for iterated sumsets
    Jonathan M. Fraser
    Douglas C. Howroyd
    Han Yu
    Mathematische Zeitschrift, 2019, 293 : 1015 - 1042
  • [7] Dimension growth for iterated sumsets
    Fraser, Jonathan M.
    Howroyd, Douglas C.
    Yu, Han
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1015 - 1042
  • [8] A note on the size of iterated sumsets in Zd
    Vrecica, Ilija
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (03) : 691 - 699
  • [10] Growth in Sumsets of Higher Convex Functions
    Peter J. Bradshaw
    Combinatorica, 2023, 43 : 769 - 789