Quantum phase transitions mediated by clustered non-Hermitian degeneracies

被引:2
|
作者
Znojil, Miloslav [1 ,2 ]
机构
[1] Czech Acad Sci, Nucl Phys Inst, Hlavni 130, Rez, Czech Republic
[2] Univ Hradec Kralove, Fac Sci, Dept Phys, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
关键词
SYMMETRY-BREAKING; HAMILTONIANS; BREAKDOWN; PHYSICS; MODELS;
D O I
10.1103/PhysRevE.103.032120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The phenomenon of degeneracy of an N-plet of bound states is studied in the framework of the quasi-Hermitian (a.k.a. PT-symmetric) formulation of quantum theory of closed systems. For a general non-Hermitian Hamiltonian H = H(lambda) such a degeneracy may occur at a real Kato's exceptional point lambda((EPN)) of order N and of the geometric multiplicity alias clusterization index K. The corresponding unitary process of collapse (loss of observability) can be then interpreted as a generic quantum phase transition. The dedicated literature deals, predominantly, with the non-numerical benchmark models of the simplest processes where K = 1. In our present paper it is shown that in the "anomalous" dynamical scenarios with 1 < K <= N/2 an analogous approach is applicable. A multiparametric anharmonic-oscillator-type exemplification of such systems is constructed as a set of real-matrix N by N Hamiltonians which are exactly solvable, maximally non-Hermitian, and labeled by specific ad hoc partitionings R(N) of N.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Entanglement phase transitions in non-Hermitian Floquet systems
    Zhou, Longwen
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [23] Excited-state quantum phase transitions studied from a non-Hermitian perspective
    Sindelka, Milan
    Santos, Lea F.
    Moiseyev, Nimrod
    [J]. PHYSICAL REVIEW A, 2017, 95 (01)
  • [24] Spectra of non-Hermitian quantum spin chains describing boundary induced phase transitions
    Bilstein, U
    Wehefritz, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (14): : 4925 - 4938
  • [25] Measuring the knot of non-Hermitian degeneracies and non-commuting braids
    Yogesh S. S. Patil
    Judith Höller
    Parker A. Henry
    Chitres Guria
    Yiming Zhang
    Luyao Jiang
    Nenad Kralj
    Nicholas Read
    Jack G. E. Harris
    [J]. Nature, 2022, 607 : 271 - 275
  • [26] Measuring the knot of non-Hermitian degeneracies and non-commuting braids
    Patil, Yogesh S. S.
    Holler, Judith
    Henry, Parker A.
    Guria, Chitres
    Zhang, Yiming
    Jiang, Luyao
    Kralj, Nenad
    Read, Nicholas
    Harris, Jack G. E.
    [J]. NATURE, 2022, 607 (7918) : 271 - +
  • [27] Phase transitions and bunching of correlated particles in a non-Hermitian quasicrystal
    Longhi S.
    [J]. Physical Review B, 2023, 108 (07)
  • [28] Topological Phase Transitions and Mobility Edges in Non-Hermitian Quasicrystals
    Lin, Quan
    Li, Tianyu
    Xiao, Lei
    Wang, Kunkun
    Yi, Wei
    Xue, Peng
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (11)
  • [29] Phase transitions and generalized biorthogonal polarization in non-Hermitian systems
    Edvardsson, Elisabet
    Kunst, Flore K.
    Yoshida, Tsuneya
    Bergholtz, Emil J.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [30] Multiple phase transitions and anomalous non-Hermitian skin effect
    Zhang, Tian
    Zhang, Xiujuan
    Chen, Yan-Feng
    Lu, Ming-Hui
    [J]. PHYSICAL REVIEW B, 2023, 107 (09)