ARITHMETIC PROPERTIES OF CERTAIN LEVEL ONE MOCK MODULAR FORMS

被引:2
|
作者
Boylan, Matthew [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Modular forms; mock theta functions; MAASS FORMS;
D O I
10.1142/S1793042110002855
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent work, Bringmann and Ono [4] show that Ramanujan's f(q) mock theta function is the holomorphic projection of a harmonic weak Maass form of weight 1/2. In this paper, we extend the work of Ono in [13]. In particular, we study holomorphic projections of certain integer weight harmonic weak Maass forms on SL(2)(Z) using Hecke operators and the differential theta-operator.
引用
收藏
页码:185 / 202
页数:18
相关论文
共 50 条
  • [31] Compact formulas for the completed mock modular forms
    Eguchi, Tohru
    Sugawara, Yuji
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (11):
  • [32] Partition identities with mixed mock modular forms
    Andrews, George E.
    Hill, Stephen
    JOURNAL OF NUMBER THEORY, 2016, 158 : 356 - 364
  • [33] MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS
    Folsom, Amanda
    Ono, Ken
    Rhoades, Robert C.
    FORUM OF MATHEMATICS PI, 2013, 1
  • [34] Mock modular forms and singular combinatorial series
    Folsom, Amanda
    Kimport, Susie
    ACTA ARITHMETICA, 2013, 159 (03) : 257 - 297
  • [35] Mock modular forms with integral Fourier coefficients
    Li, Yingkun
    Schwagenscheidt, Markus
    ADVANCES IN MATHEMATICS, 2022, 399
  • [36] Mock modular forms and class number relations
    Mertens, Michael H.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2014, 1 (01)
  • [37] Eichler–Shimura theory for mock modular forms
    Kathrin Bringmann
    Pavel Guerzhoy
    Zachary Kent
    Ken Ono
    Mathematische Annalen, 2013, 355 : 1085 - 1121
  • [38] Unimodal sequences and quantum and mock modular forms
    Bryson, Jennifer
    Ono, Ken
    Pitman, Sarah
    Rhoades, Robert C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (40) : 16063 - 16067
  • [39] A computation of modular forms of weight one and small level
    Buzzard K.
    Lauder A.
    Annales mathématiques du Québec, 2017, 41 (2) : 213 - 219
  • [40] Weierstrass mock modular forms and elliptic curves
    Alfes C.
    Griffin M.
    Ono K.
    Rolen L.
    Research in Number Theory, 1 (1)