Parameter identification for model-based advanced process control of diffusion furnaces

被引:0
|
作者
Hui, K [1 ]
Lu, CS [1 ]
机构
[1] Taiwan Semicond Mfg Co Ltd, Hsinchu 3029, Taiwan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main practice of the current trend in Advanced Process Control (APC) concentrates on run-to-run controls. Even with the few exceptions on wafer-based applications, these practices mostly rely on statistical associations for changing the controlled variables in relation to some direct or indirect measurements of process parameters. This paper reports another approach to the current mainstream APC practice by adopting real-time control techniques. First step of this approach requires a thorough understanding of the underlying physics of the process dynamics. Utilizing fundamental equations governing temperature variations for diffusion furnaces, mathematical models are obtained in state-space formulation. Parameter estimation of these models is performed from online production data for individual tool-sets. Practical issues during this implementation process are discussed in detail. As an in-house development, it integrated understanding of the governing process dynamics and digital data processing techniques without enlisting support from equipment manufacturer or software vendors.
引用
收藏
页码:136 / 139
页数:4
相关论文
共 50 条
  • [31] Optimal control and parameter identification of a reaction–diffusion network propagation model
    Linhe Zhu
    Tianyu Yuan
    [J]. Nonlinear Dynamics, 2023, 111 : 21707 - 21733
  • [32] Parameter identification of induction motors part 1: The model-based concept
    Pappano, V
    Lyshevski, SE
    Friedland, B
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 1996, : 466 - 469
  • [33] Learning identification control for model-based optoelectronic packaging
    Bhat, Shubham K.
    Kurzweg, Timothy P.
    Guez, Allon
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2006, 12 (05) : 945 - 951
  • [34] Model-Based Control for Moisture in Paper Making Process
    Karthik, C.
    Suresh, K.
    Valarmathi, K.
    Rajesh, R. Jacob
    [J]. ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY ALGORITHMS IN ENGINEERING SYSTEMS, VOL 1, 2015, 324 : 257 - 264
  • [35] Model-based control of a copper micro plating process
    Marschner, U
    Hoffmann, J
    Sadowski, G
    Hoffmann, T
    Fischer, WJ
    [J]. UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 491 - 496
  • [36] NONLINEAR MODEL-BASED CONTROL OF A RECYCLE REACTOR PROCESS
    KANADIBHOTLA, RS
    RIGGS, JB
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1995, 19 (08) : 933 - 948
  • [37] Fuzzy model-based DMC for nonlinear process control
    Kavsek-Biasizzo, K
    Skrjanc, I
    Matko, D
    [J]. ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL 1997, 1998, : 415 - 420
  • [38] A model-based online control of optimal fixturing process
    Wang, YF
    Fuh, JYH
    Wong, YS
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION - PROCEEDINGS, VOLS 1-4, 1997, : 2019 - 2024
  • [39] Model-based dynamic control of AOD converter process
    Kleimt, Bernd
    Lichterbeck, Rainer
    Burkat, Christian
    [J]. STAHL UND EISEN, 2007, 127 (01): : 35 - 41
  • [40] Online model-based control of an emulsion terpolymerisation process
    Srour, M. H.
    Gomes, Vincent G.
    Altarawneh, I. S.
    Romagnoli, J. A.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2009, 64 (09) : 2076 - 2087