Transformation of Input Domain for SVM in Regression Task

被引:3
|
作者
Siminski, Krzysztof [1 ]
机构
[1] Silesian Tech Univ, Inst Informat, PL-44100 Gliwice, Poland
来源
MAN-MACHINE INTERACTIONS 3 | 2014年 / 242卷
关键词
regression; support vector machine; neuro-fuzzy system; adaptive kernel; NEURO-FUZZY SYSTEM;
D O I
10.1007/978-3-319-02309-0_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support vector machines (SVM) and neuro-fuzzy systems (NFS) are efficient tools for regression tasks. The problem of the SVMs is the proper choice of kernel functions. Our idea is to transform the task's domain with NFS so that linear kernel can be applied. The paper is accompanied by numerical experiments.
引用
收藏
页码:423 / 430
页数:8
相关论文
共 50 条
  • [1] SVM plus Regression and Multi-Task Learning
    Cai, Feng
    Cherkassky, Vladimir
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 503 - 509
  • [2] Sensumotor transformation of input devices and the impact on practice and task difficulty
    Sutter, C.
    ERGONOMICS, 2007, 50 (12) : 1999 - 2016
  • [3] Domain transformation learning for MR image reconstruction from dual domain input
    Oh, Changheun
    Chung, Jun-Young
    Han, Yeji
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [4] Domain Adaptation with Logistic Regression for the Task of Splice Site Prediction
    Herndon, Nic
    Caragea, Doina
    BIOINFORMATICS RESEARCH AND APPLICATIONS (ISBRA 2015), 2015, 9096 : 125 - 137
  • [5] Locally weighted LS-SVM for fuzzy Nonlinear regression with fuzzy input-output
    Hong, Dug Hun
    Hwang, Challgha
    Shim, Jooyoug
    Seok, Kyung Ha
    COMPUTATIONAL INTELLIGENCE AND SECURITY, 2007, 4456 : 317 - +
  • [6] Locally weighted LS-SVM for fuzzy nonlinear regression with fuzzy input-output
    Hong, Dug Hun
    Hwang, Changha
    Shim, Jooyong
    Seok, Kyung Ha
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 28 - 32
  • [7] Comparison of SVM and LS-SVM for regression
    Wang, HF
    Hu, DJ
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 279 - 283
  • [8] Incremental and Decremental SVM for Regression
    Galmeanu, H.
    Sasu, L. M.
    Andonie, R.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2016, 11 (06) : 755 - 775
  • [9] Tracking of object with SVM regression
    Zhu, WY
    Wang, S
    Lin, RS
    Levinson, S
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2001, : 240 - 245
  • [10] Universum Learning for SVM Regression
    Dhar, Sauptik
    Cherkassky, Vladimir
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3641 - 3648