Composite CO2 separation membranes: Insights on kinetics and stability

被引:21
|
作者
Patricio, S. G. [1 ]
Papaioannou, E. I. [2 ]
Ray, B. M. [2 ]
Metcalfe, I. S. [2 ]
Marques, F. M. B. [1 ]
机构
[1] Univ Aveiro, CICECO, Dept Mat & Ceram Engn, P-3810193 Aveiro, Portugal
[2] Newcastle Univ, Sch Chem Eng & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
CO2; permeation; Impedance spectroscopy; Ambipolar conductivity; Membrane endurance; Composite electrolytes; CARBON-DIOXIDE SEPARATION; DUAL-PHASE MEMBRANES; MOLTEN-CARBONATE; HIGH-TEMPERATURE; IMPEDANCE SPECTROSCOPY; DOPED CERIA; ELECTROLYTES; PERFORMANCE; PERMEATION; TRANSPORT;
D O I
10.1016/j.memsci.2017.07.008
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The electrical performance and CO2 permeation of composite membranes based on Gd-doped ceria skeletons impregnated with molten alkaline carbonates are benchmarked against their predictable performance based on ambipolar conductivity governed kinetics (best scenario), using customized diagrams. Experiments performed in the 550-850 degrees C temperature range showed permeation rates reaching almost 0.6 cm(3) min(-1) cm(-2) at 850 degrees C with 50 mol% CO2 content in the feed side. Endurance tests performed at 650 degrees C for over 100 h showed a small degradation due to microstructural changes. Impedance spectroscopy measurements combined with microstructural analysis involving several composite membranes and skeletons after distinct thermal history confirmed the potential of these techniques to monitor the ceramic skeleton and membrane condition. The diagrams used to map membrane performance highlight in an entirely novel manner several kinetic and experimental constraints.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 50 条
  • [41] Characteristics of Gas Permeation Behaviour in Multilayer Thin Film Composite Membranes for CO2 Separation
    Lillepaerg, Jelena
    Breitenkamp, Sabrina
    Shishatskiy, Sergey
    Pohlmann, Jan
    Wind, Jan
    Scholles, Carsten
    Brinkmann, Torsten
    [J]. MEMBRANES, 2019, 9 (02)
  • [42] Fabrication of polymer/fluoride-containing salts blend composite membranes for CO2 separation
    Ji, Pengfei
    Cao, Yiming
    Jie, Xingming
    Yuan, Quan
    [J]. JOURNAL OF NATURAL GAS CHEMISTRY, 2010, 19 (06): : 560 - 566
  • [43] Effects of Porous Supports in Thin-Film Composite Membranes on CO2 Separation Performances
    Guo, Hongfang
    Xu, Wenqi
    Wei, Jing
    Ma, Yulei
    Qin, Zikang
    Dai, Zhongde
    Deng, Jing
    Deng, Liyuan
    [J]. MEMBRANES, 2023, 13 (03)
  • [44] Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review
    Dai, Zhongde
    Ansaloni, Luca
    Deng, Liyuan
    [J]. GREEN ENERGY & ENVIRONMENT, 2016, 1 (02) : 102 - 128
  • [45] Poly(ethylene oxide)-Based Copolymer-IL Composite Membranes for CO2 Separation
    Vroulias, Dionysios
    Staurianou, Eirini
    Ioannides, Theophilos
    Deimede, Valadoula
    [J]. MEMBRANES, 2023, 13 (01)
  • [46] High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation
    Li, Xueqin
    Jiang, Zhongyi
    Wu, Yingzhen
    Zhang, Haiyang
    Cheng, Youdong
    Guo, Ruili
    Wu, Hong
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2015, 495 : 72 - 80
  • [47] Biopolymers for sustainable membranes in CO2 separation: a review
    Russo, Francesca
    Galiano, Francesco
    Iulianelli, Adolfo
    Basile, Angelo
    Figoli, Alberto
    [J]. FUEL PROCESSING TECHNOLOGY, 2021, 213
  • [48] CO2 separation by membranes in natural gas processing
    Clarizia, G
    Drioli, E
    [J]. Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities, 2005, 191 : 287 - 292
  • [49] Enhanced CO2 Separation Achieved by Fluorinated Membranes
    Yang, Zhenzhen
    [J]. CHEM, 2020, 6 (03): : 541 - 543
  • [50] Optimization of PIM-membranes for separation of CO2
    Bengtson, G.
    Neumann, S.
    Filiz, V.
    [J]. EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 796 - 798