Multiband multistatic synthetic aperture radar for measuring ice sheet basal conditions

被引:0
|
作者
Paden, J [1 ]
Mozaffar, S [1 ]
Dunson, D [1 ]
Allen, C [1 ]
Gogineni, S [1 ]
Akins, T [1 ]
机构
[1] Univ Kansas, Radar Syst & Remote Sensing Lab, Lawrence, KS 66045 USA
关键词
ice; scattering; multistatic; synthetic aperture radar;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Ice sheet models are necessary, to understand ice sheet dynamics and to predict their behavior. Of the primary inputs to these models, basal conditions are the least understood. By observing the forward and backscatter across a wide frequency range (over two octaves) the basal conditions can be established with a high level of confidence. For this purpose, we developed a multistatic synthetic aperture radar system that operates on three frequency hands (75-85 MHz, 140-160 MHz, and 330-370 MHz,). The radar system is designed to use pulse compression techniques and coherent integration to obtain high loop sensitivity (203 dB) necessary to overcome radio frequency losses in ice. The system will be tested at Summit, Greenland (72degrees34' N, 38degrees29' W) during July 2004.
引用
收藏
页码:136 / 139
页数:4
相关论文
共 50 条
  • [21] GNSS-Based Phase Synchronization for Bistatic and Multistatic Synthetic Aperture Radar
    Rodrigues-Silva, Eduardo
    Rodriguez-Cassola, Marc
    Krieger, Gerhard
    Moreira, Alberto
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [22] Multistatic Synthetic Aperture Radar Autofocus for Back Projection Imaging of a Moving Target
    Rattan, Anmol
    Andre, Daniel
    Finnis, Mark
    ELECTRONICS LETTERS, 2025, 61 (01)
  • [23] MULTISTATIC SYNTHETIC APERTURE RADAR BASELINE DESIGN FOR 3-D IMAGING
    An, Hongyang
    Shen, Mingxing
    Wang, Chaodong
    Ren, Hang
    Mao, Xinyu
    Wu, Junjie
    Li, Zhongyu
    Yang, Jianyu
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2502 - 2505
  • [24] Dynamic Multistatic Synthetic Aperture Radar (DMSAR) with Image Reconstruction Algorithms and Analysis
    Seetharaman, Guna S.
    Hayden, Eric T.
    Schmalz, Mark S.
    Chapman, William R.
    Ranka, Sanjay
    Sahni, Sartaj K.
    2013 IEEE (AIPR) APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP: SENSING FOR CONTROL AND AUGMENTATION, 2013,
  • [25] Morphological approach to multiband synthetic aperture radar (SAR) image segmentation
    Loccisano, S
    Mejail, M
    JacoboBerlles, J
    STATISTICAL AND STOCHASTIC METHODS FOR IMAGE PROCESSING, 1996, 2823 : 212 - 223
  • [26] Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery
    Jezek, KC
    ANNALS OF GLACIOLOGY, VOL 29, 1999, 1999, 29 : 286 - 290
  • [27] Multichannel Wideband Synthetic Aperture Radar for Ice Sheet Remote Sensing: Development and the First Deployment in Antarctica
    Wang, Zongbo
    Gogineni, Sivaprasad
    Rodriguez-Morales, Fernando
    Yan, Jie-Bang
    Paden, John
    Leuschen, Carlton
    Hale, Richard D.
    Li, Jilu
    Carabajal, Calen Lee
    Gomez-Garcia, Daniel
    Townley, Bryan
    Willer, Robby
    Stearns, Leigh
    Child, Sarah
    Braaten, David
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (03) : 980 - 993
  • [29] Decentralized Approach for Translational Motion Estimation with Multistatic Inverse Synthetic Aperture Radar Systems
    Testa, Alejandro
    Pastina, Debora
    Santi, Fabrizio
    REMOTE SENSING, 2023, 15 (18)
  • [30] Phase Synchronization Techniques for Bistatic and Multistatic Synthetic Aperture Radar Accounting for frequency offset
    LIANG, D. A.
    ZHANG, H. E. N. G.
    LIU, K. A. I. Y. U.
    LIU, D. A. C. H. E. N. G.
    WANG, R. O. B. E. R. T.
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (03) : 153 - 167