A CMOS reconfigurable distributed amplifier employing large-signal MGTR technique

被引:0
|
作者
Zhang, Ying [1 ,2 ]
Ma, Kaixue [2 ]
Zhang, Changchun [1 ]
Zhang, Yi [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Natl & Local Joint Engn Lab Radio Frequency Integ, Nanjing, Jiangsu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
artificial transmission line (ATL); distributed amplifier (DA); large-signal (LS) multigated transistor (MGTR); power added efficiency (PAE); reconfigurable;
D O I
10.1002/mop.30743
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a reconfigurable CMOS distributed amplifier (DA) employing a large-signal (LS) multigated transistor (MGTR) topology for high efficiency and linearity. With separated gate bias voltage of gain cells, the DA can be reconfigurable to work at normal-gain (NG) mode and high-efficiency (HE) mode. The gradually changed artificial transmission line (ATL) connected to the output port is designed to increase the output power while maintaining good output impedance matching. At NG mode, the DA achieves an average forward gain of 11.8 dB from 1.6 to 17.8 GHz, while providing the output power at 1 dB output compression point (OP1 dB) of 5.8-9.64 dBm with the power added efficiency (PAE) of 2.2%-5.2% for frequencies 3-16 GHz. At HE mode, the DA has an average forward gain of 7.6 dB over 1-18.8 GHz, and achieves the OP1dB of 6.9-9.65 dBm with the high PAE of 6.6%-10.8% for frequencies 3-16 GHz.
引用
收藏
页码:2371 / 2375
页数:5
相关论文
共 50 条
  • [41] Large-signal analysis of MOS varactors in CMOS -Gm LC VCOs
    Bunch, RL
    Raman, S
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (08) : 1325 - 1332
  • [42] CMOS Distributed Paraphase Amplifier Employing Derivative Superposition Linearization for Wireless Communications
    El-Khatib, Ziad
    MacEachern, Leonard
    Mahmoud, Samy A.
    [J]. 2009 52ND IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2009, : 1006 - 1009
  • [43] Investigation of Temperature Dependence of mmWave Power Amplifier Large-Signal Reliability Performance
    Rathi, Aarti
    Srinivasan, Purushothaman
    Guarin, Fernando
    Dixit, Abhisek
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (03) : 928 - 933
  • [44] Darlington feedback amplifier with good bias stability under large-signal conditions
    Lee, TK
    Chan, WS
    Siu, YM
    [J]. ELECTRONICS LETTERS, 2004, 40 (20) : 1271 - 1272
  • [45] A Large-Signal Behavioural Modeling Approach of GaN HEMTs for Power Amplifier Design
    Yegin, M. Oguz
    Gurdal, Armagan
    Ozipek, Ulas
    Ozbay, Ekmel
    [J]. 2020 15TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC), 2021, : 229 - 232
  • [46] Large-signal time-domain simulation of class-E amplifier
    Pietrenko, W
    Janke, W
    Kazimierczuk, MK
    [J]. 2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL V, PROCEEDINGS, 2002, : 21 - 24
  • [47] WIDE-BAND LARGE-SIGNAL AMPLIFIER BASED ON AN ODD NUMBER OF MESFETS
    DAGOSTINO, S
    PAOLONI, C
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1995, 9 (06) : 310 - 312
  • [48] SELF-CONSISTENT LARGE-SIGNAL THEORY OF THE GYROTRON TRAVELING WAVE AMPLIFIER
    GANGULY, AK
    AHN, S
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 1982, 53 (06) : 641 - 658
  • [49] Large-signal distributed millimeter-wave multifinger pHEMT modeling using time-domain technique
    Aliakbari, Hanieh
    Abdipour, Abdolali
    Mirzavand, Rashid
    Avolio, Gustavo
    [J]. INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2017, 27 (07)
  • [50] A subthreshold CMOS continuous-time bandpass filter with large-signal stability
    Furth, PM
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 1999, 19 (02) : 197 - 205