A CMOS reconfigurable distributed amplifier employing large-signal MGTR technique

被引:0
|
作者
Zhang, Ying [1 ,2 ]
Ma, Kaixue [2 ]
Zhang, Changchun [1 ]
Zhang, Yi [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Natl & Local Joint Engn Lab Radio Frequency Integ, Nanjing, Jiangsu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
artificial transmission line (ATL); distributed amplifier (DA); large-signal (LS) multigated transistor (MGTR); power added efficiency (PAE); reconfigurable;
D O I
10.1002/mop.30743
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a reconfigurable CMOS distributed amplifier (DA) employing a large-signal (LS) multigated transistor (MGTR) topology for high efficiency and linearity. With separated gate bias voltage of gain cells, the DA can be reconfigurable to work at normal-gain (NG) mode and high-efficiency (HE) mode. The gradually changed artificial transmission line (ATL) connected to the output port is designed to increase the output power while maintaining good output impedance matching. At NG mode, the DA achieves an average forward gain of 11.8 dB from 1.6 to 17.8 GHz, while providing the output power at 1 dB output compression point (OP1 dB) of 5.8-9.64 dBm with the power added efficiency (PAE) of 2.2%-5.2% for frequencies 3-16 GHz. At HE mode, the DA has an average forward gain of 7.6 dB over 1-18.8 GHz, and achieves the OP1dB of 6.9-9.65 dBm with the high PAE of 6.6%-10.8% for frequencies 3-16 GHz.
引用
收藏
页码:2371 / 2375
页数:5
相关论文
共 50 条
  • [1] A WLAN RF CMOS PA With Large-Signal MGTR Method
    Joo, Taehwan
    Koo, Bonhoon
    Hong, Songcheol
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (03) : 1272 - 1279
  • [2] LARGE-SIGNAL SUBTHRESHOLD CMOS TRANSCONDUCTANCE AMPLIFIER
    OPRIS, IE
    KOVACS, GTA
    [J]. ELECTRONICS LETTERS, 1995, 31 (09) : 718 - 720
  • [3] A PROGRAMMABLE PIECEWISE LINEAR LARGE-SIGNAL CMOS AMPLIFIER
    THOMSEN, A
    BROOKE, MA
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1993, 28 (01) : 84 - 89
  • [4] A CMOS Antiphase Power Amplifier With an MGTR Technique for Mobile Applications
    Park, Jonghoon
    Lee, Changhyun
    Yoo, Jinho
    Park, Changkun
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (11) : 4645 - 4656
  • [5] The design of CMOS transimpedance amplifier based on BSIM large-signal model
    Kuo, CW
    Hsiao, CC
    Yang, SC
    Chan, YJ
    [J]. 2001 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS (RFIC) SYMPOSIUM, DIGEST OF PAPERS, 2001, : 165 - 168
  • [6] A 15 GHz CMOS RF switch employing large-signal impedance matching
    Park, J
    Ma, ZQ
    [J]. 2006 TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS, DIGEST OF PAPERS, 2006, : 186 - +
  • [7] A wideband common-gate CMOS LNA employing complementary MGTR technique
    Guo, Benqing
    Chen, Jun
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2017, 59 (07) : 1668 - 1671
  • [8] LARGE-SIGNAL BEHAVIOR OF DISTRIBUTED KLYSTRONS
    SUN, C
    DALMAN, GC
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1968, ED15 (02) : 60 - &
  • [9] LARGE-SIGNAL EFFECTS IN AN OPTICAL BSO AMPLIFIER
    REFREGIER, P
    SOLYMAR, L
    RAJBENBACH, H
    HUIGNARD, JP
    [J]. ELECTRONICS LETTERS, 1984, 20 (16) : 656 - 657
  • [10] LARGE-SIGNAL INPUT CAPACITANCE OF A TRANSISTOR AMPLIFIER
    DERYNCK, RR
    JOHNSTON, RH
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1974, SC 9 (04) : 194 - 196