PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations

被引:724
|
作者
Denny, Joshua C. [1 ,2 ]
Ritchie, Marylyn D. [3 ]
Basford, Melissa A. [1 ]
Pulley, Jill M. [1 ,2 ]
Bastarache, Lisa [1 ]
Brown-Gentry, Kristin [3 ]
Wang, Deede [2 ]
Masys, Dan R. [1 ]
Roden, Dan M. [2 ]
Crawford, Dana C. [3 ]
机构
[1] Vanderbilt Univ, Dept Biomed Informat, Nashville, TN 37203 USA
[2] Vanderbilt Univ, Dept Med, Nashville, TN USA
[3] Vanderbilt Univ, Dept Mol Physiol & Biophys, Ctr Human Genet Res, Sch Med, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
RISK; DIAGNOSIS; CHILDREN;
D O I
10.1093/bioinformatics/btq126
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Emergence of genetic data coupled to longitudinal electronic medical records (EMRs) offers the possibility of phenome-wide association scans (PheWAS) for disease-gene associations. We propose a novel method to scan phenomic data for genetic associations using International Classification of Disease (ICD9) billing codes, which are available in most EMR systems. We have developed a code translation table to automatically de. ne 776 different disease populations and their controls using prevalent ICD9 codes derived from EMR data. As a proof of concept of this algorithm, we genotyped the first 6005 European-Americans accrued into BioVU, Vanderbilt's DNA biobank, at five single nucleotide polymorphisms (SNPs) with previously reported disease associations: atrial fibrillation, Crohn's disease, carotid artery stenosis, coronary artery disease, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis. The PheWAS software generated cases and control populations across all ICD9 code groups for each of these five SNPs, and disease-SNP associations were analyzed. The primary outcome of this study was replication of seven previously known SNP-disease associations for these SNPs. Results: Four of seven known SNP-disease associations using the PheWAS algorithm were replicated with P-values between 2.8 x 10(-6) and 0.011. The PheWAS algorithm also identified 19 previously unknown statistical associations between these SNPs and diseases at P < 0.01. This study indicates that PheWAS analysis is a feasible method to investigate SNP-disease associations. Further evaluation is needed to determine the validity of these associations and the appropriate statistical thresholds for clinical significance.
引用
收藏
页码:1205 / 1210
页数:6
相关论文
共 50 条
  • [31] Phenome-Wide Association Study (PheWAS) for Detection of Pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network
    Pendergrass, Sarah A.
    Brown-Gentry, Kristin
    Dudek, Scott
    Frase, Alex
    Torstenson, Eric S.
    Goodloe, Robert
    Ambite, Jose Luis
    Avery, Christy L.
    Buyske, Steve
    Buzkova, Petra
    Deelman, Ewa
    Fesinmeyer, Megan D.
    Haiman, Christopher A.
    Heiss, Gerardo
    Hindorff, Lucia A.
    Hsu, Chu-Nan
    Jackson, Rebecca D.
    Kooperberg, Charles
    Le Marchand, Loic
    Lin, Yi
    Matise, Tara C.
    Monroe, Kristine R.
    Moreland, Larry
    Park, Sungshim L.
    Reiner, Alex
    Wallace, Robert
    Wilkens, Lynn R.
    Crawford, Dana C.
    Ritchie, Marylyn D.
    [J]. PLOS GENETICS, 2013, 9 (01):
  • [32] Phenome-wide and expression quantitative trait locus associations of coronavirus disease 2019 genetic risk loci
    Moon, Chang Yoon
    Schilder, Brian M.
    Raj, Towfique
    Huang, Kuan-Lin
    [J]. ISCIENCE, 2021, 24 (06)
  • [33] A phenome-wide association study to discover pleiotropic effects of PCSK9, APOB, and LDLR
    Maya S. Safarova
    Benjamin A. Satterfield
    Xiao Fan
    Erin E. Austin
    Zhan Ye
    Lisa Bastarache
    Neil Zheng
    Marylyn D. Ritchie
    Kenneth M. Borthwick
    Marc S. Williams
    Eric B. Larson
    Aaron Scrol
    Gail P. Jarvik
    David R. Crosslin
    Kathleen Leppig
    Laura J. Rasmussen-Torvik
    Sarah A. Pendergrass
    Amy C. Sturm
    Bahram Namjou
    Amy Sanghavi Shah
    Robert J. Carroll
    Wendy K. Chung
    Wei-Qi Wei
    QiPing Feng
    C. Michael Stein
    Dan M. Roden
    Teri A. Manolio
    Daniel J. Schaid
    Joshua C. Denny
    Scott J. Hebbring
    Mariza de Andrade
    Iftikhar J. Kullo
    [J]. npj Genomic Medicine, 4
  • [34] A phenome-wide association study to discover pleiotropic effects of PCSK9, APOB, and LDLR
    Safarova, Maya S.
    Satterfield, Benjamin A.
    Fan, Xiao
    Austin, Erin E.
    Ye, Zhan
    Bastarache, Lisa
    Zheng, Neil
    Ritchie, Marylyn D.
    Borthwick, Kenneth M.
    Williams, Marc S.
    Larson, Eric B.
    Scrol, Aaron
    Jarvik, Gail P.
    Crosslin, David R.
    Leppig, Kathleen
    Rasmussen-Torvik, Laura J.
    Pendergrass, Sarah A.
    Sturm, Amy C.
    Namjou, Bahram
    Shah, Amy Sanghavi
    Carroll, Robert J.
    Chung, Wendy K.
    Wei, Wei-Qi
    Feng, QiPing
    Stein, C. Michael
    Roden, Dan M.
    Manolio, Teri A.
    Schaid, Daniel J.
    Denny, Joshua C.
    Hebbring, Scott J.
    de Andrade, Mariza
    Kullo, Iftikhar J.
    [J]. NPJ GENOMIC MEDICINE, 2019, 4
  • [35] A Case-Crossover Phenome-wide association study (PheWAS) for understanding Post-COVID-19 diagnosis patterns
    Haupert, Spencer R.
    Shi, Xu
    Chen, Chen
    Fritsche, Lars G.
    Mukherjee, Bhramar
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 136
  • [36] Joint mouse-human phenome-wide association to test gene function and disease risk
    Wang, Xusheng
    Pandey, Ashutosh K.
    Mulligan, Megan K.
    Williams, Evan G.
    Mozhui, Khyobeni
    Li, Zhengsheng
    Jovaisaite, Virginija
    Quarles, L. Darryl
    Xiao, Zhousheng
    Huang, Jinsong
    Capra, John A.
    Chen, Zugen
    Taylor, William L.
    Bastarache, Lisa
    Niu, Xinnan
    Pollard, Katherine S.
    Ciobanu, Daniel C.
    Reznik, Alexander O.
    Tishkov, Artem V.
    Zhulin, Igor B.
    Peng, Junmin
    Nelson, Stanley F.
    Denny, Joshua C.
    Auwerx, Johan
    Lu, Lu
    Williams, Robert W.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [37] Phenome-Wide Association Study (phewas) Identifies Clinical Factors Associated With Plasma Ketones from Four Large Studies
    Selvaraj, Senthil
    Giamberardino, Stephanie
    Abdulrahim, Jawan
    Margulies, Kenneth B.
    Kelly, Daniel P.
    Haynes, Carol
    Mentz, Robert J.
    Hernandez, Adrian F.
    Holman, Rury
    Peterson, Eric D.
    Shah, Svati H.
    [J]. CIRCULATION, 2021, 144
  • [38] PROSPECTIVE AND CROSS-SECTIONAL ASSOCIATIONS BETWEEN SLEEP APNEA AND DISEASE IN A PHENOME-WIDE ANALYSIS OF A CLINICAL BIOBANK
    Cade, Brian
    Hassan, Syed
    Dashti, Hassan
    Kiernan, Melissa
    Pavlova, Milena
    Redline, Susan
    Karlson, Elizabeth
    [J]. SLEEP, 2022, 45 : A307 - A307
  • [39] Birth month affects lifetime disease risk: a phenome-wide method
    Boland, Mary Regina
    Shahn, Zachary
    Madigan, David
    Hripcsak, George
    Tatonetti, Nicholas P.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (05) : 1042 - 1053
  • [40] Large-scale phenome-wide scan in twins using electronic health records
    Hebbring, Scott J.
    Ye, Zhan
    Pathak, Jyotishman
    Mayer, John
    Cheng, Yijing
    Schrodi, Steven J.
    [J]. GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 555 - 556