Structural, magnetic and dielectric properties of lanthanum substituted Mn0.5 Zn0.5Fe2O4

被引:41
|
作者
Phor, Lakshita [1 ]
Kumar, Vinod [1 ]
机构
[1] Deenbandhu Chhotu Ram Univ Sci & Technol, Dept Phys, Murthal 131039, Haryana, India
关键词
Nano-spinel ferrites; X-ray diffraction; Magnetic properties; Dielectric constant; Dielectric loss; Coprecipitation method; ZN FERRITE NANOPARTICLES; ELECTRICAL-PROPERTIES; IONS; GD;
D O I
10.1016/j.ceramint.2019.07.341
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mn0.5Zn0.5LaxFe2-xO4 (x = 0.0, 0.025, 0.050, 0.075 and 0.10) ferrites have been synthesized using coprecipitation method. Effect of substitution of La3+ on structural, magnetic and dielectric properties of Mn0.5Zn0.5LaxFe2-xO4 was studied. Structural properties have been investigated using X-ray diffraction (XRD) and morphological by transmission electron microscopy (TEM). XRD analysis revealed the formation of cubic spinel structure. Different structural parameters like lattice parameter, crystallite size, interionic distances, average cationic radii, bond angles and bond lengths have been calculated and compared with various theoretically predicted parameter TEM images confirmed that particle size decreases with La content. Magnetic behavior of synthesized sample was studied employing vibrating sample magnetometer (VSM). It was noted that as x increased from 0 to 0. maximum magnetization showed decreasing trend from 34.57 emu/gm to 15.34 emu/gm (noted at 15000 and Curie temperature from 193 degrees C to 147 degrees C at constant field of 500 G. Real (epsilon') and imaginary part (epsilon '') dielectric constant, dielectric loss (tan delta), ac conductivity (sigma(ac)), real (Z') and imaginary part (Z '') of impedance were studied with frequency (0.1 Hz-1 MHz) and composition. epsilon', epsilon '', tan delta and sigma(ac) were observed to decrease wit substitution of La3+ ions. This variation can be attributed to the hopping of electrons between Fe2+ ions an Fe3+ ions at octahedral sites. Cole-cole plot showed a single semicircular arc for Mn0.5Zn0.5LaxFe2-xO4 clear indicating the dominant effect of grain boundary in conduction.
引用
收藏
页码:22972 / 22980
页数:9
相关论文
共 50 条
  • [21] Biocompatibility study of Mn0.5Zn0.5Fe2O4 magnetic nanoparticles
    Liu, Jing
    Zhang, Jia
    Wang, Li
    Li, Yuntao
    Zhang, Dongsheng
    MEMS/NEMS NANO TECHNOLOGY, 2011, 483 : 552 - 558
  • [22] Structural, magnetic, elastic, and dielectric properties of Mn0.3−xCdxCu0.2Zn0.5Fe2O4 nanoparticles
    Morteza Beyranvand
    Ahmad Gholizadeh
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 5124 - 5140
  • [23] Fabrication and Characterization of Mn0.5Zn0.5Fe2O4 Magnetic Nanofibers
    Xiang Jun
    Shen Xiang-Qian
    Song Fu-Zhan
    Meng Xian-Feng
    CHINESE PHYSICS LETTERS, 2010, 27 (01)
  • [24] Structural, optical and magnetic properties of MgFe2O4 and Ni0.5Zn0.5Fe2O4
    Anagha, A.
    Joshua, A.
    Chacko, Basil
    Babu, T. Avanish
    Srigiri, Sriram
    Madhuri, W.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 313
  • [25] Structural, Morphological and Magnetic Properties of Zn0.5Mg0.5Fe2O4 as Anticorrosion Pigment
    Deraz, N. M.
    Abd-Elkader, Omar H.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (09): : 7138 - 7146
  • [26] Influence of temperature on structural and magnetic properties of Co0.5Mn0.5Fe2O4 ferrites
    Ramay, S. M.
    Saleem, Murtaza
    Atiq, S.
    Siddiqi, Saadat A.
    Naseem, S.
    Anwar, M. Sabieh
    BULLETIN OF MATERIALS SCIENCE, 2011, 34 (07) : 1415 - 1419
  • [27] Exploring the Structural, Thermal and Dielectric Properties of PVA/Ni0.5Zn0.5Fe2O4 Composites
    Taha, T. A.
    Elrabaie, S.
    Attia, M. T.
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (10) : 6797 - 6806
  • [28] Exploring the Structural, Thermal and Dielectric Properties of PVA/Ni0.5Zn0.5Fe2O4 Composites
    T. A. Taha
    S. Elrabaie
    M. T. Attia
    Journal of Electronic Materials, 2019, 48 : 6797 - 6806
  • [29] Improved Magnetic Properties of Microwave-Processed Mn0.5Zn0.5Fe2O4 Nanoparticles
    Thota, Suneetha
    Kashyap, Subhash C.
    Gupta, H. C.
    Nath, T. K.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2015, 28 (01) : 131 - 136
  • [30] Improved Magnetic Properties of Microwave-Processed Mn0.5Zn0.5Fe2O4 Nanoparticles
    Suneetha Thota
    Subhash C. Kashyap
    H. C. Gupta
    T. K. Nath
    Journal of Superconductivity and Novel Magnetism, 2015, 28 : 131 - 136