Abstract Hardy-Littlewood Maximal Inequality

被引:0
|
作者
Sadr, Maysam Maysami [1 ]
Ganji, Monireh Barzegar [1 ]
机构
[1] Inst Adv Studies Basic Sci IASBS, Dept Math, Zanjan, Iran
关键词
Hardy-Littlewood maximal function; Vitali's covering lemma; Metric measure space; Dyadic cube; Calderon-Zygmund set; SPACES;
D O I
10.1007/s40995-021-01137-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main aim of this note is to unify some concepts and technics in various generalizations of maximal function theory. We consider two abstract versions of the Vitali covering lemma and introduce and study an abstract Hardy-Littlewood maximal inequality that generalizes the weak type (1, 1) maximal function inequality. Our abstract inequality can be stated for any outer measure on an arbitrary set with a class of subsets. It turns out that the inequality is (effectively) satisfied if and only if a special numerical constant called Hardy-Littelwood maximal constant is finite. Two general sufficient conditions for the finiteness of this constant are given, and the upper bounds associated with the family of (centered) balls in homogeneous spaces, family of dyadic cubes in Euclidean spaces, family of admissible trapezoids in homogeneous trees and family of Calderon-Zygmund sets in (ax+b)-group are considered. Also, as a very simple application, we find some nontrivial estimates for mass density of classical mechanical systems in Euclidean space.
引用
收藏
页码:1717 / 1724
页数:8
相关论文
共 50 条
  • [21] A reverse weighted inequality for the Hardy-Littlewood maximal function in Orlicz spaces
    H. Kita
    Acta Mathematica Hungarica, 2003, 98 : 85 - 101
  • [22] On the centered Hardy-Littlewood maximal operator
    Melas, AD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (08) : 3263 - 3273
  • [23] Continuity of Hardy-Littlewood Maximal Function
    Di WU
    Dun-yan YAN
    Acta Mathematicae Applicatae Sinica, 2020, 36 (04) : 982 - 990
  • [24] ON THE VARIATION OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION
    Kurka, Ondrej
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 109 - 133
  • [25] Continuity of Hardy-Littlewood Maximal Function
    Di Wu
    Dun-yan Yan
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 982 - 990
  • [26] Continuity of Hardy-Littlewood Maximal Function
    Wu, Di
    Yan, Dun-yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 982 - 990
  • [27] ON THE HARDY-LITTLEWOOD MAXIMAL FUNCTION FOR THE CUBE
    Bourgain, Jean
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 203 (01) : 275 - 293
  • [28] A note on Hardy-Littlewood maximal operators
    Mingquan Wei
    Xudong Nie
    Di Wu
    Dunyan Yan
    Journal of Inequalities and Applications, 2016
  • [29] A note on Hardy-Littlewood maximal operators
    Wei, Mingquan
    Nie, Xudong
    Wu, Di
    Yan, Dunyan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 13
  • [30] ITERATIONS OF HARDY-LITTLEWOOD MAXIMAL FUNCTIONS
    NEUGEBAUER, CJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (02) : 272 - 276