String correlators: recursive expansion, integration-by-parts and scattering equations

被引:25
|
作者
He, Song [1 ,2 ]
Teng, Fei [3 ]
Zhang, Yong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] Uppsala Univ, Dept Phys & Astron, S-75108 Uppsala, Sweden
关键词
Scattering Amplitudes; Bosonic Strings; Gauge Symmetry; AMPLITUDES; TREE;
D O I
10.1007/JHEP09(2019)085
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We further elaborate on the general construction proposed in [1], which connects, via tree-level double copy, massless string amplitudes with color-ordered QFT amplitudes that are given by Cachazo-He-Yuan formulas. The current paper serves as a detailed study of the integration-by-parts procedure for any tree-level massless string correlator outlined in the previous letter. We present two new results in the context of heterotic and (compactified) bosonic string theories. First, we find a new recursive expansion of any multitrace mixed correlator in these theories into a logarithmic part corresponding to the CHY integrand for Yang-Mills-scalar amplitudes, plus correlators with the total number of traces and gluons decreased. By iterating the expansion, we systematically reduce string correlators with any number of subcycles to linear combinations of Parke-Taylor factors and similarly for the case with gluons. Based on this, we then derive a CHY formula for the corresponding (DF)(2) + YM + phi(3) amplitudes. It is the first closed-form result for such multitrace amplitudes and thus greatly extends our result for the single-trace case. As a byproduct, it gives a new CHY formula for all Yang-Mills-scalar amplitudes. We also study consistency checks of the formula such as factorizations on massless poles.
引用
收藏
页数:41
相关论文
共 50 条
  • [21] Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space
    Dominik Bendle
    Janko Böhm
    Wolfram Decker
    Alessandro Georgoudis
    Franz-Josef Pfreundt
    Mirko Rahn
    Pascal Wasser
    Yang Zhang
    Journal of High Energy Physics, 2020
  • [22] Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals
    Boehm, Janko
    Georgoudis, Alessandro
    Larsen, Kasper J.
    Schulze, Mathias
    Zhang, Yang
    PHYSICAL REVIEW D, 2018, 98 (02)
  • [23] Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space
    Bendle, Dominik
    Boehm, Janko
    Decker, Wolfram
    Georgoudis, Alessandro
    Pfreundt, Franz-Josef
    Rahn, Mirko
    Wasser, Pascal
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [24] Scattering equations in AdS: scalar correlators in arbitrary dimensions
    Eberhardt, Lorenz
    Komatsu, Shota
    Mizera, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
  • [25] Scattering equations in AdS: scalar correlators in arbitrary dimensions
    Lorenz Eberhardt
    Shota Komatsu
    Sebastian Mizera
    Journal of High Energy Physics, 2020
  • [26] Recursive equations for arbitrary scattering processes
    Draggiotis, P.
    van Hameren, A.
    Kleiss, R.
    Lazopoulos, A.
    Papadopoulos, C. G.
    Worek, M.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2006, 160 : 255 - 260
  • [27] NEATIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals
    Wu, Zihao
    Boehm, Janko
    Ma, Rourou
    Xu, Hefeng
    Zhang, Yang
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 295
  • [28] TWO-PARAMETER STOCHASTIC CALCULUS AND MALLIAVIN'S INTEGRATION-BY-PARTS FORMULA ON WIENER SPACE
    Norris, James R.
    ASTERISQUE, 2009, (327) : 93 - 114
  • [29] Scattering equations and string theory amplitudes
    Bjerrum-Bohr, N. Emil J.
    Damgaard, Poul Henrik
    Tourkine, Piotr
    Vanhove, Pierre
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [30] String scattering in flat space and a scaling limit of Yang-Mills correlators
    Okuda, Takuya
    Penedones, Joao
    PHYSICAL REVIEW D, 2011, 83 (08):