Computing the Clique-Width on Series-Parallel Graphs

被引:0
|
作者
Antonio Lopez-Medina, Marco [1 ]
Leonardo Gonzalez-Ruiz, J. [1 ]
Raymundo Marcial-Romero, J. [1 ]
Hernandez, J. A. [1 ]
机构
[1] Univ Autonoma Estado Mexico, Fac Ingn, Toluca De Lerdo, Mexico
来源
COMPUTACION Y SISTEMAS | 2022年 / 26卷 / 02期
关键词
Graph theory; clique-width; tree-width; complexity; series-parallel;
D O I
10.13053/CyS-26-2-4250
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The clique-width (cwd) is an invariant of graphs which, similar to other invariants like the tree-width (twd) establishes a parameter for the complexity of a problem. For example, several problems with bounded clique-width can be solved in polynomial time. There is a well known relation between tree-width and clique-width denoted as cwd(G) <= 3 center dot 2(twd(G)-1). Serial-parallel graphs have tree-width of at most 2, so its clique-width is at most 6 according to the previous relation. In this paper, we improve the bound for this particular case, showing that the clique-width of series-parallel graphs is smaller or equal to 5.
引用
收藏
页码:815 / 822
页数:8
相关论文
共 50 条
  • [31] Induced Minor Free Graphs: Isomorphism and Clique-width
    Belmonte, Remy
    Otachi, Yota
    Schweitzer, Pascal
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2016, 9224 : 299 - 311
  • [32] INDUCTIVE COMPUTATIONS ON GRAPHS DEFINED BY CLIQUE-WIDTH EXPRESSIONS
    Carrere, Frederique
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2009, 43 (03): : 625 - 651
  • [33] Induced Minor Free Graphs: Isomorphism and Clique-Width
    Rémy Belmonte
    Yota Otachi
    Pascal Schweitzer
    Algorithmica, 2018, 80 : 29 - 47
  • [34] Succinct data structures for bounded clique-width graphs
    Chakraborty, Sankardeep
    Jo, Seungbum
    Sadakane, Kunihiko
    Satti, Srinivasa Rao
    DISCRETE APPLIED MATHEMATICS, 2024, 352 : 55 - 68
  • [35] On the linear structure and clique-width of bipartite permutation graphs
    Brandstädt, A
    Lozin, VV
    ARS COMBINATORIA, 2003, 67 : 273 - 281
  • [36] Feedback vertex set on graphs of low clique-width
    Binh-Minh Bui-Xuan
    Suchy, Ondrej
    Telle, Jan Arne
    Vatshelle, Martin
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (03) : 666 - 679
  • [37] Succinct Data Structures for Small Clique-Width Graphs
    Chakraborty, Sankardeep
    Jo, Seungbum
    Sadakane, Kunihiko
    Satti, Srinivasa Rao
    2021 DATA COMPRESSION CONFERENCE (DCC 2021), 2021, : 133 - 142
  • [38] Induced Minor Free Graphs: Isomorphism and Clique-Width
    Belmonte, Remy
    Otachi, Yota
    Schweitzer, Pascal
    ALGORITHMICA, 2018, 80 (01) : 29 - 47
  • [39] Query efficient implementation of graphs of bounded clique-width
    Courcelle, B
    Vanicat, R
    DISCRETE APPLIED MATHEMATICS, 2003, 131 (01) : 129 - 150
  • [40] Compact Navigation Oracles for Graphs with Bounded Clique-Width
    Kamali, Shahin
    2016 DATA COMPRESSION CONFERENCE (DCC), 2016, : 566 - 576