On Determinism and Unambiguity of Weighted Two-Way Automata

被引:1
|
作者
Carnino, Vincent [1 ]
Lombardy, Sylvain [2 ]
机构
[1] Univ Paris Est Marne la Vallee, LIGM, UMR 8049, 5 Blvd Descartes, F-77420 Champs Sur Marne, France
[2] Inst Polytech Bordeaux, LaBRI, UMR 5800, F-33405 Talence, France
关键词
Weighted automata; two-way automata; determinization; unambiguity;
D O I
10.1142/S0129054115400158
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper deals with one-way and two-way weighted automata. When the semiring of weights is commutative, we prove that unambiguous one-way automata, unambiguous two-way automata and deterministic two-way automata realize the same (rational) power series. If the semiring of weights is not commutative, unambiguous one-way automata and deterministic two-way automata realize the same rational power series, but unambiguous two-way automata may realize non rational power series.
引用
收藏
页码:1127 / 1146
页数:20
相关论文
共 50 条
  • [11] Weighted two-way transducers
    Feng, Fan
    Maletti, Andreas
    INFORMATION AND COMPUTATION, 2023, 295
  • [12] Complement for Two-Way Alternating Automata
    Geffert, Viliam
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, CSR 2018, 2018, 10846 : 132 - 144
  • [13] Complement for two-way alternating automata
    Geffert, Viliam
    Kapoutsis, Christos A.
    Zakzok, Mohammad
    ACTA INFORMATICA, 2021, 58 (05) : 463 - 495
  • [14] Alternation in two-way finite automata
    Konstantinidis, Stavros
    Moreira, Nelma
    Reis, Rogerio
    THEORETICAL COMPUTER SCIENCE, 2021, 870 : 103 - 120
  • [15] Complement for two-way alternating automata
    Viliam Geffert
    Christos A. Kapoutsis
    Mohammad Zakzok
    Acta Informatica, 2021, 58 : 463 - 495
  • [16] Alternation in two-way finite automata
    Kapoutsis, Christos
    Zakzok, Mohammad
    THEORETICAL COMPUTER SCIENCE, 2021, 870 (870) : 75 - 102
  • [17] Complementing two-way finite automata
    Geffert, Viliam
    Mereghetti, Carlo
    Pighizzini, Giovanni
    INFORMATION AND COMPUTATION, 2007, 205 (08) : 1173 - 1187
  • [18] TWO-WAY PROBABILISTIC AUTOMATA.
    Kuklin, Yu.I.
    Automatic Control and Computer Sciences, 1973, 7 (05) : 29 - 31
  • [19] Converting two-way nondeterministic unary automata into simpler automata
    Geffert, V
    Mereghetti, C
    Pighizzini, G
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2001, 2001, 2136 : 398 - 407
  • [20] On the transformation of two-way finite automata to unambiguous finite automata
    Petrov, Semyon
    Okhotin, Alexander
    INFORMATION AND COMPUTATION, 2023, 295