Boundary Feedback Stabilization of a Class of Coupled Hyperbolic Equations With Nonlocal Terms

被引:27
|
作者
Su, Lingling [1 ,2 ]
Wang, Jun-Min [1 ]
Krstic, Miroslav [2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
基金
中国国家自然科学基金;
关键词
Backstepping method; coupled ordinary differential equations-hyperbolic equations; nonlocal term; wave equation; CONSERVATION-LAWS; PARABOLIC PDES; WAVE-EQUATION; SYSTEMS;
D O I
10.1109/TAC.2017.2767824
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper solves the problem of boundary feedback stabilization of a class of coupled ordinary differential equations-hyperbolic equations with boundary, trace, and integral nonlocal terms. Using the backstepping approach, the controller is designed by formulating an integral operator, whose kernel is required to satisfy a coupled hyperbolic partial integral differential equation. By applying the method of successive approximations, the kernel's well-posedness is given. We prove the exponential stability of the origin of the system in a suitable Hilbert space. Moreover, a wave system with nonlocal terms is stabilized by applying the above result.
引用
收藏
页码:2633 / 2640
页数:8
相关论文
共 50 条
  • [31] Global Boundary Feedback Stabilization for a Class of Pseudo-Parabolic Partial Differential Equations
    Hasan, Agus
    Aamo, Ole Morten
    Foss, Bjarne
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 5607 - 5612
  • [32] ON A CLASS OF NONLOCAL PROBLEMS FOR HYPERBOLIC EQUATIONS WITH DEGENERATION OF TYPE AND ORDER
    Repin, O. A.
    Kumykova, S. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2014, (04): : 22 - 32
  • [33] BOUNDARY FEEDBACK AS A SINGULAR LIMIT OF DAMPED HYPERBOLIC PROBLEMS WITH TERMS CONCENTRATING AT THE BOUNDARY
    Jimenez-Casas, Angela
    Rodriguez-Bernal, Anibal
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (09) : 5125 - 5147
  • [34] Feedback stabilization of a class of evolution equations with delay
    E. M. Ait Benhassi
    K. Ammari
    S. Boulite
    L. Maniar
    Journal of Evolution Equations, 2009, 9 : 103 - 121
  • [35] Feedback stabilization of a class of evolution equations with delay
    Benhassi, E. M. Ait
    Ammari, K.
    Boulite, S.
    Maniar, L.
    JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (01) : 103 - 121
  • [36] Boundary Exponential Stabilization for a Class of Coupled Reaction-Diffusion Equations with State Delay
    Abdelhadi Abta
    Salahaddine Boutayeb
    Journal of Dynamical and Control Systems, 2022, 28 : 829 - 850
  • [37] Boundary Exponential Stabilization for a Class of Coupled Reaction-Diffusion Equations with State Delay
    Abta, Abdelhadi
    Boutayeb, Salahaddine
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2022, 28 (04) : 829 - 850
  • [38] Boundary stabilization of compactly coupled wave equations
    Komornik, V
    Rao, BP
    ASYMPTOTIC ANALYSIS, 1997, 14 (04) : 339 - 359
  • [39] BOUNDARY STABILIZATION OF COUPLED-WAVE EQUATIONS
    KOMORNIK, V
    RAO, BP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (07): : 833 - 838
  • [40] Classical Solutions of Hyperbolic Differential-Difference Equations with Several Nonlocal Terms
    N. V. Zaitseva
    Lobachevskii Journal of Mathematics, 2021, 42 : 231 - 236