Hand Gesture Recognition Using Micro-Doppler Signatures With Convolutional Neural Network

被引:156
|
作者
Kim, Youngwook [1 ]
Toomajian, Brian [1 ]
机构
[1] Calif State Univ Fresno, Dept Elect & Comp Engn, Fresno, CA 93740 USA
来源
IEEE ACCESS | 2016年 / 4卷
关键词
Hand gesture; micro-Doppler signatures; Doppler radar; deep convolutional neural networks; CLASSIFICATION;
D O I
10.1109/ACCESS.2016.2617282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the feasibility of recognizing human hand gestures using micro Doppler signatures measured by Doppler radar with a deep convolutional neural network (DCNN). Hand gesture recognition using radar can be applied to control electronic appliances. Compared with an optical recognition system, radar can work regardless of light conditions and it can be embedded in a case. We classify ten different hand gestures, with only micro-Doppler signatures on spectrograms without range information. The ten gestures, which included swiping from left to right, swiping from right to left, rotating clockwise, rotating counterclockwise, pushing, double pushing, holding, and double holding, were measured using Doppler radar and their spectrograms investigated. A DCNN was employed to classify the spectrograms, with 90% of the data utilized for training and the remaining 10% for validation. After five-fold validation, the classification accuracy of the proposed method was found to be 85.6%. With seven gestures, the accuracy increased to 93.1%.
引用
收藏
页码:7125 / 7130
页数:6
相关论文
共 50 条
  • [31] Sparsity-Driven Micro-Doppler Feature Extraction for Dynamic Hand Gesture Recognition
    Li, Gang
    Zhang, Rui
    Ritchie, Matthew
    Griffiths, Hugh
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (02) : 655 - 665
  • [32] Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks
    Kim, Youngwook
    Moon, Taesup
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (01) : 8 - 12
  • [33] Doppler-Radar Based Hand Gesture Recognition System Using Convolutional Neural Networks
    Zhang, Jiajun
    Tao, Jinkun
    Shi, Zhiguo
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 1096 - 1113
  • [34] Recognition and Classification of Rotorcraft by Micro-Doppler Signatures Using Deep Learning
    Liu, Ying
    Liu, Jinyi
    COMPUTATIONAL SCIENCE - ICCS 2018, PT I, 2018, 10860 : 141 - 152
  • [35] Target classiflcation and pattern recognition using micro-Doppler radar signatures
    Yang, Yinan
    Lei, Jiajin
    Zhang, Wenxue
    Lu, Chao
    SNPD 2006: SEVENTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, PROCEEDINGS, 2006, : 213 - +
  • [36] Temporal Convolutional Neural Networks for Radar Micro-Doppler Based Gait Recognition
    Addabbo, Pia
    Bernardi, Mario Luca
    Biondi, Filippo
    Cimitile, Marta
    Clemente, Carmine
    Orlando, Danilo
    SENSORS, 2021, 21 (02) : 1 - 15
  • [37] Dynamic Hand Gesture Recognition using 2D Convolutional Neural Network
    Liu, Yupeng
    Yang, Mingqiang
    Li, Jie
    Zheng, Qinghe
    Wang, Deqiang
    ENGINEERING LETTERS, 2020, 28 (01) : 243 - 254
  • [38] Electromyographic hand gesture recognition using convolutional neural network with multi-attention
    Zhang, Zhen
    Shen, Quming
    Wang, Yanyu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 91
  • [39] FPGA-based Implementation of Hand Gesture Recognition Using Convolutional Neural Network
    Zhang, Tongtong
    Zhou, Weiguo
    Jiang, Xin
    Liu, Yunhui
    2018 IEEE INTERNATIONAL CONFERENCE ON CYBORG AND BIONIC SYSTEMS (CBS), 2018, : 133 - 138
  • [40] Convolutional Neural Network for Hand Gesture Recognition using 8 different EMG Signals
    Orlando Pinzon-Arenas, Javier
    Jimenez-Moreno, Robinson
    Esteban Herrera-Benavides, Julian
    2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,