Machine learning enhanced electrical impedance tomography for 2D materials

被引:9
|
作者
Coxson, Adam [1 ]
Mihov, Ivo [1 ]
Wang, Ziwei [1 ]
Avramov, Vasil [1 ]
Barnes, Frederik Brooke [1 ]
Slizovskiy, Sergey [1 ,2 ]
Mullan, Ciaran [1 ]
Timokhin, Ivan [1 ]
Sanderson, David [2 ]
Kretinin, Andrey [2 ]
Yang, Qian [1 ,2 ]
Lionheart, William R. B. [3 ]
Mishchenko, Artem [1 ,2 ]
机构
[1] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
GREIT algorithm; electrical impedance tomography; 2D materials; machine learning; pyEIT; deep D-bar; RECONSTRUCTION; MODEL;
D O I
10.1088/1361-6420/ac7743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Electrical impedance tomography (EIT) is a non-invasive imaging technique that reconstructs the interior conductivity distribution of samples from a set of voltage measurements performed on the sample boundary. EIT reconstruction is a non-linear and ill-posed inverse problem. Consequently, the non-linearity results in a high computational cost of solution, while regularisation and the most informative measurements must be used to overcome ill-posedness. To build the foundation of future research into EIT applications for 2D materials, such as graphene, we designed and implemented a novel approach to measurement optimisation via a machine learning adaptive electrode selection algorithm (A-ESA). Furthermore, we modified the forward solver of a python-based EIT simulation software, pyEIT, to include the complete electrode model (CEM) and employed it on 2D square samples (Liu B et al 2018 SoftwareX 7 304-8; Somersalo E et al 1992 SIAM J. Appl. Math. 52 1023-40). In addition, the deep D-Bar U-Net convolutional neural network architecture was applied to post-process conductivity map reconstructions from the GREIT algorithm (Hamilton and Hauptmann 2018 IEEE Trans. Med. Imaging 37 2367-77; Adler et al 2009 Physiol. Meas. 30 S35). The A-ESA offered around 20% lower reconstruction losses in fewer measurements than the standard opposite-adjacent electrode selection algorithm, on both simulated data and when applied to a real graphene-based device. The CEM enhanced forward solver achieved a 3% lower loss compared to the original pyEIT forward model. Finally, an experimental evaluation was performed on a graphene laminate film. Overall, this work demonstrates how EIT could be applied to 2D materials and highlights the utility of machine learning in both the experimental and analytical aspects of EIT.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Hybrid machine learning in electrical impedance tomography
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Guzik, Miroslaw
    Niderla, Konrad
    Lipski, Jerzy
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (12): : 169 - 172
  • [2] Improving 2D Block Method in Electrical Impedance Tomography
    Zaravi, Saeed
    Amirfattahi, Rassoul
    Vahdat, Bijan Vosoughi
    Hassanipour, Ali
    [J]. 2015 22ND IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2015, : 245 - 250
  • [3] ELECTRICAL IMPEDANCE TOMOGRAPHY, ENCLOSURE METHOD AND MACHINE LEARNING
    Siltanen, Samuli
    Ide, Takanori
    [J]. PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [4] Realistic 2D Model of the Human Thorax for Electrical Impedance Tomography
    Bader, Oumaima
    Ben Amara, Najoua Essoukri
    Kanoun, Olfa
    [J]. 2022 INTERNATIONAL WORKSHOP ON IMPEDANCE SPECTROSCOPY (IWIS), 2022, : 70 - 74
  • [5] Robot-Assisted Electrical Impedance Scanning system for 2D Electrical Impedance Tomography tissue inspection
    Cheng, Zhuoqi
    Dall'Alba, Diego
    Fiorini, Paolo
    Savarimuthu, Thiusius Rajeeth
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3729 - 3733
  • [6] Classification of Electrical Impedance Tomography Data Using Machine Learning
    Pessoa, Diogo
    Rocha, Bruno Machado
    Cheimariotis, Grigorios-Aris
    Haris, Kostas
    Strodthoff, Claas
    Kaimakamis, Evangelos
    Maglaveras, Nicos
    Frerichs, Inez
    de Carvalho, Paulo
    Paiva, Rui Pedro
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 349 - 353
  • [7] A 2D and 3D electrical impedance tomography imaging using experimental data
    [J]. Dmitry, S. (shulgadim@gmail.com), 2012, IEEE Computer Society
  • [8] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    D. Yu. Kirsanova
    M. A. Soldatov
    Z. M. Gadzhimagomedova
    D. M. Pashkov
    A. V. Chernov
    M. A. Butakova
    A. V. Soldatov
    [J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 485 - 494
  • [9] Machine Learning Study of the Magnetic Ordering in 2D Materials
    Acosta, Carlos Mera
    Ogoshi, Elton
    Souza, Jose Antonio
    Dalpian, Gustavo M.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 9418 - 9432
  • [10] Exploring and machine learning structural instabilities in 2D materials
    Manti, Simone
    Svendsen, Mark Kamper
    Knosgaard, Nikolaj R. R.
    Lyngby, Peder M. M.
    Thygesen, Kristian S. S.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)