Signature of a Z2 Vortex in the Dynamical Correlations of the Triangular-Lattice Heisenberg Antiferromagnet

被引:35
|
作者
Okubo, Tsuyoshi [1 ]
Kawamura, Hikaru [1 ]
机构
[1] Osaka Univ, Fac Sci, Dept Earth & Space Sci, Osaka 5600043, Japan
关键词
frustration; triangular lattice; dynamical spin structure factor; Z(2) vortex; spin-dynamics simulation; topological transition; SPIN-LIQUID STATE; PHASE-TRANSITION; XY-MODEL; SYSTEMS; NACRO2;
D O I
10.1143/JPSJ.79.084706
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamical properties of the classical Heisenberg antiferromagnet on the triangular lattice are investigated by means of a spin-dynamics simulation and an analytical calculation. While the model was suggested to exhibit a topological transition driven by the Z(2)-vortex binding-unbinding, weakness of the associated thermodynamic singularity has made it difficult to observe the evidence of the Z(2) vortex experimentally so far, only some indirect support. Here, we show that the signature of the Z(2)-vortex excitation and the vortex-induced topological transition can be captured from the dynamical spin correlations. In particular, the dynamical spin structure factor exhibits a characteristic central peak around the Z(2)-vortex transition, and this central peak will be a fingerprint of the Z(2)-vortex excitation.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] High field magnetic properties of the triangular-lattice antiferromagnet AgCrS2
    Li, Hexuan
    Gao, Wenshuai
    Shi, Liran
    Ouyang, Zhongwen
    Xia, Zhengcai
    Wang, Zhe
    Liu, Bingjie
    Zou, Youming
    Yu, Lu
    Zhang, Lei
    Pi, Li
    Qu, Zhe
    Zhang, Yuheng
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 489
  • [32] Instability of a quantum spin liquid in an organic triangular-lattice antiferromagnet
    Itou, T.
    Oyamada, A.
    Maegawa, S.
    Kato, R.
    NATURE PHYSICS, 2010, 6 (09) : 673 - 676
  • [34] EPR studies of the triangular-lattice antiferromagnet Cs2CuBr4
    Schulze, E.
    Ponomaryov, A. N.
    Wosnitza, J.
    Tanaka, H.
    Zvyagin, S. A.
    LOW TEMPERATURE PHYSICS, 2017, 43 (11) : 1311 - 1314
  • [35] EPR studies of the triangular-lattice antiferromagnet Cs2CuBr4
    Zvyagin, S.A. (s.zvyagin@hzdr.de), 1642, Institute for Low Temperature Physics and Engineering (43):
  • [36] RAMAN-SCATTERING STUDY OF THE TRIANGULAR-LATTICE ANTIFERROMAGNET VCL2
    SUGAWARA, K
    YAMADA, I
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (09) : 1427 - 1436
  • [37] Single crystal growth of the metallic triangular-lattice antiferromagnet PdCrO2
    Takatsu, Hiroshi
    Maeno, Yoshiteru
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (23) : 3461 - 3465
  • [38] Noncollinear magnetic phases of a triangular-lattice antiferromagnet and of doped CuFeO2
    Fishman, Randy S.
    Okamoto, Satoshi
    PHYSICAL REVIEW B, 2010, 81 (02)
  • [39] μSR study of the triangular-lattice antiferromagnet CsNiBr3
    Gubbens, PCM
    Visser, D
    de Réotier, PD
    Yaouanc, A
    Amato, A
    Cottrell, SP
    King, PJC
    PHYSICA B-CONDENSED MATTER, 2006, 374 : 160 - 162
  • [40] Magnetic phase diagram of the S=1/2 triangular-lattice Heisenberg antiferromagnet Ba3CoNb2O9
    Yokota, Kazuya
    Kurita, Nobuyuki
    Tanaka, Hidekazu
    PHYSICAL REVIEW B, 2014, 90 (01):