Transformer-Based Detector for OFDM With Index Modulation

被引:8
|
作者
Zhang, Dexin [1 ]
Wang, Sixian [1 ]
Niu, Kai [1 ]
Dai, Jincheng [1 ]
Wang, Sen [2 ]
Yuan, Yifei [2 ]
机构
[1] Beijing Univ Posts & Telecommun BUPT, Key Lab Universal Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
[2] China Mobile Res Inst CMRI, Beijing 100053, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Transformers; Indexes; Neural networks; OFDM; Modulation; Feature extraction; Index modulation (IM) detector; deep learning (DL); transformer; self-attention mechanism; LEARNING-BASED DETECTOR;
D O I
10.1109/LCOMM.2022.3158734
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
A deep learning (DL)-based detector utilizing the Transformer framework is proposed for orthogonal frequency-division multiplexing with index modulation (OFDM-IM) systems, termed as TransIM. Concretely, TransIM adopts a two-step detection method. First, the neural networks with the Transformer block as the core provide soft probabilities of different transmitted symbols. Then, conventional signal detection methods are performed based on those probabilities to make final decisions. This method is verified to improve system error performance significantly, albeit at the cost of slightly increased complexity. Simulation results indicate that the proposed TransIM detector fares better than existing DL-based ones regarding bit error rate (BER) performance.
引用
收藏
页码:1313 / 1317
页数:5
相关论文
共 50 条
  • [21] Likelihood-Based Automatic Modulation Classification in OFDM With Index Modulation
    Zheng, Jianping
    Lv, Yanfang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) : 8192 - 8204
  • [22] SEFDM Based Index Modulation on OFDM-IM
    Sarwar, Muhammad Sajid
    Shin, Soo Young
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (11) : 1906 - 1910
  • [23] Opportunistic Spectrum Sharing Based on OFDM With Index Modulation
    Li, Qiang
    Wen, Miaowen
    Dang, Shuping
    Basar, Ertugrul
    Poor, H. Vincent
    Chen, Fangjiong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (01) : 192 - 204
  • [24] Local to Global: A Sparse Transformer-Based Small Object Detector for Remote Sensing Images
    Li, Zheng
    Wang, Yongcheng
    Feng, Hao
    Chen, Chi
    Xu, Dongdong
    Zhao, Tianqi
    Gao, Yunxiao
    Zhao, Zhikang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [25] Transformer-Based Learned Optimization
    Gartner, Erik
    Metz, Luke
    Andriluka, Mykhaylo
    Freeman, C. Daniel
    Sminchisescu, Cristian
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11970 - 11979
  • [26] STD2: Swin Transformer-Based Defect Detector for Surface Anomaly Detection
    Mia, Md Sohag
    Li, Chunbiao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [27] Transformer-based Image Compression
    Lu, Ming
    Guo, Peiyao
    Shi, Huiqing
    Cao, Chuntong
    Ma, Zhan
    DCC 2022: 2022 DATA COMPRESSION CONFERENCE (DCC), 2022, : 469 - 469
  • [28] Transformer-Based Microbubble Localization
    Gharamaleki, Sepideh K.
    Helfield, Brandon
    Rivaz, Hassan
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [29] Vector OFDM With Index Modulation
    Liu, Yun
    Ji, Fei
    Wen, Miaowen
    Wan, Dehuan
    Zheng, Beixiong
    IEEE ACCESS, 2017, 5 : 20135 - 20144
  • [30] Filtered OFDM with Index Modulation
    Girish, Lavanya
    Thakre, Arpita
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 1631 - 1635